Influence of phenological growth stages on the bioactivity and chemical profile of Buddleja saligna (Willd.) extracts
##plugins.themes.bootstrap3.article.main##
Keywords
Abstract
Buddleja saligna (Willd.) has been reported to have promising pharmacological activities due to its antioxidant, antimutagenic, and antibacterial properties. In this study, the plant material of B. saligna (Willd.) was harvested at the flowering, fruiting, and vegetative stages and extracted by maceration and ultrasound-assisted extraction (UAE). The extracts were then analyzed to determine the antioxidant activity, total phenolic content, antiproliferative (SK-MEL1 [melanoma cell lines] and A375M [cell line exhibiting epithelial morphology]), and genotoxic ([Chinese hamster ovary] CHO-K1) activities. Hydrogen-1 proton nuclear magnetic resonance (1H-NMR) and high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) analysis were performed to determine the chemical profile of the extracts. Regardless of the applied extraction method, results showed that samples collected during the flowering stage exhibited the highest antioxidant and antiproliferative activities; they also reported high cytotoxicity against melanoma cell lines but low genotoxicity against CHO-K1 cells. Moreover, samples collected during the flowering stage presented a higher concentration of bioactive compounds (verbascoside, hydroxycoumarin, isoacteroside, and luteonin derivatives) compared to those collected during the fruiting and vegetative stages. The results of this study highlight the potential benefits of B. saligna (Willd.) to produce extracts with important bioactive properties.
Riferimenti bibliografici
Adegbaju OD, Otunola GA, Afolayan AJ. Effects of growth stage and seasons on the phytochemical content and antioxidant activities of crude extracts of Celosia Argentea L. Heliyon. 2020;6:e04086. http://doi.org/10.1016/j.heliyon.2020.e04086
Al-Naqeb G, Sidarovich V, Scrinzi D, Mazzeo I, Robbiati S, Pancher M, et al. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 3. Toxicological evaluation. J Environ Manage. 2022;320:115910. http://doi.org/10.1016/j.jenvman.2022.115910
Amiri S, Motalebi Moghanjougi Z, Rezazadeh Bari M, Mousavi Khaneghah A. Natural protective agents and their applications as bio-preservatives in the food industry: An overview of current and future applications. Ital J Food Sci. 2021;33:55–68. http://doi.org/10.15586/ijfs.v33iSP1.2045
Angeli L, Morozova K, Scampicchio M. A kinetic-based stopped-flow DPPH method. Sci Rep. 2023;13:1–8. http://doi.org/10.1038/s41598-023-34382-7
Ashraf MA, Iqbal M, Rasheed R, Hussain I, Riaz M, Arif MS. Environmental stress and secondary metabolites in plants. In Plant Metabolites and Regulation Under Environmental Stress. Elsevier; 2018. p. 153–67. ISBN 9780128126899
Bamuamba K, Gammon DW, Meyers P, Dijoux-Franca M-G, Scott G. Anti-mycobacterial activity of five plant species used as traditional medicines in the Western Cape Province (South Africa). J Ethnopharmacol. 2008;117:385–90. http://doi.org/10.1016/j.jep.2008.02.007
Belwal T, Ezzat SM, Rastrelli L, Bhatt ID, Daglia M, Baldi A, et al. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. TrAC. 2018;100:82–102. http://doi.org/10.1016/j.trac.2017.12.018
Bernardi M, Adami V, Albiero E, Madeo D, Rodeghiero F, Astori G. Absence of micronucleus formation in CHO-K1 cells cultivated in platelet lysate enriched medium. Exp Toxicol Pathol. 2014;66:111–6. http://doi.org/10.1016/j.etp.2013.11.001
Biswas A, Dey S, Xiao A, Huang S, Birhanie ZM, Deng Y, et al. Phytochemical content and antioxidant activity of different anatomical parts of Corchorus Olitorius and C. Capsularis during different phenological stages. Heliyon. 2023;9:e16494. http://doi.org/10.1016/j.heliyon.2023.e16494
Bouchareb A, Djemel A, Kadi I, Djemoui A, Bensouici C, Atanassova M, et al. Chemical profile, biological activities, and molecular docking of Algerian Juniperus Phoenicea berries. Ital J Food Sci. 2024;36:370–94. http://doi.org/10.15586/ijfs.v36i4.2729
Bouras Y, Atef C, Cherrada N, Gheraissa N, Chenna D, Chemsa AE, et al. Phytochemical profile and biological activities of Brassica oleracea var. elongata leaf and seed extracts: An in vitro study. Ital J Food Sci. 2024;36:193–207. http://doi.org/10.15586/ijfs.v36i4.2691
Boussoussa H, Khacheba I, Djeridane A, Mellah N, Yousfi M. Antibacterial activity from Rhanterium Adpressum flowers extracts, depending on seasonal variations. Ind Crops Prod. 2016; http://doi.org/10.1016/j.indcrop.2015.12.020
Chau Nguyen TM, Gavahian M, Tsai P-J. Ultrasound-assisted extraction of gac (Momordica Cochinchinensis Spreng.) leaves: Effect of maturity stage on phytochemicals and carbohydrate-hydrolyzing enzymes inhibitory activity. Ital J Food Sci. 2021;33:34–42. http://doi.org/10.15586/ijfs.v33iSP1.1987
Chukwujekwu JC, Amoo SO, de Kock CA, Smith PJ, Van Staden J. Antiplasmodial, acetylcholinesterase and alpha-glucosidase inhibitory and cytotoxicity properties of Buddleja Saligna. S Afr J Bot. 2014;94:6–8. http://doi.org/10.1016/j.sajb.2014.05.003
Chukwujekwu JC, Rengasamy KRR, de Kock CA, Smith PJ, Slavětínská LP, van Staden J. Alpha-glucosidase inhibitory and antiplasmodial properties of terpenoids from the leaves of Buddleja Saligna Willd. J Enzyme Inhib Med Chem. 2016;31:63–6. http://doi.org/10.3109/14756366.2014.1003927
de Bono, J.S., Guo, C., Gurel, B., De Marzo, A.M., Sfanos, K.S., Mani, R.S., Gil, J., Drake, C.G., and Alimonti, A. 2020. Prostate Carcinogenesis: Inflammatory Storms. Nature Reviews Cancer. 2020;20:455–69. http://doi.org/10.1038/s41568-020-0267-9
Deb PK, Sarkar B. Seasonal variation of verbascoside as a principal phenolic compound linked with antioxidant potentials of Clerodendrum Glandulosum Lindl. leaves. Nat Prod Res. 2022;36:4415–9. http://doi.org/10.1080/14786419.2021.1979542
Dhanani T, Shah S, Gajbhiye NA, Kumar S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania Somnifera. Arab J Chem. 2017;10:1193–9. http://doi.org/10.1016/j.arabjc.2013.02.015
Dizdaroglu M, Jaruga P. Mechanisms of free radical-induced damage to DNA. Free Radic Res. 2012;46:382–419. http://doi.org/10.3109/10715762.2011.653969
Duh PD, Yen GC, Yen WJ, Chang LW. Antioxidant effects of water extracts from barley (Hordeum Vulgare L.) prepared under different roasting temperatures. J Agric Food Chem. 2001; http://doi.org/10.1021/jf000882l
Farhadi N, Babaei K, Farsaraei S, Moghaddam M, Ghasemi Pirbalouti A. Changes in essential oil compositions, total phenol, flavonoids and antioxidant capacity of Achillea Millefolium at different growth stages. Ind Crops Prod. 2020;152:112570. http://doi.org/10.1016/j.indcrop.2020.112570
Feduraev P, Chupakhina G, Maslennikov P, Tacenko N, Skrypnik L. Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex Crispus L. and Rumex Obtusifolius L. at different growth stages. Antioxidants. 2019;8:237. http://doi.org/10.3390/antiox8070237
Fonmboh DJ, Abah ER, Fokunang TE, Herve B, Teke GN, Rose NM, et al. An overview of methods of extraction, isolation and characterization of natural medicinal plant products in improved traditional medicine research. AJRMPS. 2020;31–57. http://doi.org/10.9734/ajrimps/2020/v9i230152
Gasparini A, Ferrentino G, Angeli L, Morozova K, Zatelli D, Scampicchio M. Ultrasound assisted extraction of oils from apple seeds: A comparative study with supercritical fluid and conventional solvent extraction. IFSET. 2023;86:103370. http://doi.org/10.1016/j.ifset.2023.103370
Gupta N, Verma K, Nalla S, Kulshreshtha A, Lall R, Prasad S. Free radicals as a double-edged sword: The cancer preventive and therapeutic roles of curcumin. Molecules. 2020;25:5390. http://doi.org/10.3390/molecules25225390
Kalın P, Gülçin İl, Gören AC. Antioxidant activity and polyphenol content of cranberries (Vaccinium Macrocarpon). Rec Nat Prod. 2015;9:496–502.
Khodabande Z, Jafarian V, Sariri R. Antioxidant activity of Chelidonium Majus extract at phenological stages. Appl Biol Chem. 2017;60:497–503. http://doi.org/10.1007/s13765-017-0304-x
Kocabey N, Yilmaztekin M, Hayaloglu AA. Effect of maceration duration on physicochemical characteristics, organic acid, phenolic compounds and antioxidant activity of red wine from Vitis Vinifera L. karaoglan. J Food Sci Technol. 2016;53:3557–65. http://doi.org/10.1007/s13197-016-2335-4
Lefebvre T, Destandau E, Lesellier E. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. J Chromatogr A. 2021;1635:461770. http://doi.org/10.1016/j.chroma.2020.461770
Mabusela MM, Matsiliza-Mlathi B, Kleynhans R. Phenological growth stages of Buddleja Saligna Willd. according to the BBCH scale. Plants. 2024;13:3542. http://doi.org/10.3390/plants13243542
Maree JE, Viljoen AM. Phytochemical distinction between Pelargonium Sidoides and Pelargonium Reniforme – A quality control perspective. S Afr J Bot. 2012;82:83–91. http://doi.org/10.1016/j.sajb.2012.07.007
Margraf T, Karnopp AR, Rosso ND, Granato D. Comparison between Folin‐Ciocalteu and Prussian blue assays to estimate the total phenolic content of juices and teas using 96‐well microplates. J Food Sci. 2015;80: http://doi.org/10.1111/1750-3841.13077
Mosibo OK, Scampicchio M, Ferrentino G. Calorimetric adaptation of the inhibited autoxidation method to determine the activity of individual antioxidants and natural extracts. J Therm Anal Calorim. 2022;147:12829–36. http://doi.org/10.1007/s10973-022-11399-0
Ncube B, Finnie JF, Van Staden J. Seasonal variation in antimicrobial and phytochemical properties of frequently used medicinal bulbous plants from South Africa. S Afr J Bot. 2011;77:387–96. http://doi.org/10.1016/j.sajb.2010.10.004
Nina N, Burgos-Edwards A, Theoduloz C, Tripathy S, Matsabisa M G, Schmeda-Hirschmann G. Chemical profiling, enzyme inhibitory activity and antioxidant capacity of South African herbal teas: Buddleja saligna, Lippia javanica, L. scaberrima and Phyla dulcis. Antioxidants. 2024;13:1219. http://doi.org/10.3390/antiox13101219.
OECD Test No. 487: In Vitro Mammalian Cell Micronucleus Test, OECD Guidelines for the Testing of Chemicals. OECD publishing: Paris; 2023. ISBN 9789264264861
Olivier DK, Shikanga EA, Combrinck S, Krause RWM, Regnier T, Dlamini TP. Phenylethanoid glycosides from Lippia javanica. S Afr J Bot. 2010;76:58–63. http://doi.org/10.1016/j.sajb.2009.07.002
Panda D, Manickam S. Cavitation technology – the future of greener extraction method: A review on the extraction of natural products and process intensification mechanism and perspectives. Appl Sci. 2019;9:766. http://doi.org/10.3390/app9040766
Patel M, Dave K, Patel P. A review on different extraction method of plants: Innovation from ancient to modern technology. IJBPAS. 2021;10:511–27. http://doi.org/10.31032/IJBPAS/2021/10.12.1044
Rahali N, Mehdi S, Younsi F, Boussaid M, Messaoud C. Antioxidant, α-amylase, and acetylcholinesterase inhibitory activities of Hertia Cheirifolia essential oils: Influence of plant organs and seasonal variation. Int J Food Prop. 2017;1–15. http://doi.org/10.1080/10942912.2017.1352597
Rasul MG. Conventional extraction methods use in medicinal plants, their advantages and disadvantages. IJBSAC. 2018;2:10–14.
Sharifi-Rad M, Pohl P, Epifano F, Zengin G, Jaradat N, Messaoudi M. Teucrium Polium (L.): Phytochemical screening and biological activities at different phenological stages. Molecules. 2022;27:1561. http://doi.org/10.3390/molecules27051561
Singh A, Venugopala KN, Khedr MA, Pillay M, Nwaeze KU, Coovadia Y, et al. Antimycobacterial, docking and molecular dynamic studies of pentacyclic triterpenes from Buddleja Saligna Leaves. J Biomol Struct Dyn. 2017;35:2654–64. http://doi.org/10.1080/07391102.2016.1227725
Tiago O, Maicon N, Ivan RC, Diego NF, Vinícius JS, Mauricio F, et al. Plant secondary metabolites and its dynamical systems of induction in response to environmental factors: A review. Afr J Agric Res. 2017;12:71–84. http://doi.org/10.5897/AJAR2016.11677
Topal M, Gulcin İ. Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus Officinalis L.). Biocatal Agric Biotechnol. 2022;43:102417. http://doi.org/10.1016/j.bcab.2022.102417
Twilley D, Langhansová L, Palaniswamy D, Lall N. Evaluation of traditionally used medicinal plants for anticancer, antioxidant, anti-inflammatory and anti-viral (HPV-1) activity. S Afr J Bot. 2017;112:494–500. http://doi.org/10.1016/j.sajb.2017.05.021
Twilley D, Moodley D, Rolfes H, Moodley I, McGaw LJ, Madikizela B, et al. Ethanolic extracts of South African plants, Buddleja Saligna Willd. and Helichrysum Odoratissimum (L.) sweet, as multifunctional ingredients in sunscreen formulations. S Afr J Bot. 2021;137:171–182. http://doi.org/10.1016/j.sajb.2020.10.010
Venugopal R, Liu RH. Phytochemicals in diets for breast cancer prevention: The importance of resveratrol and ursolic acid. Food Sci Hum Well. 2012;1:1–13. http://doi.org/10.1016/j.fshw.2012.12.001
Xue F, Li C. Effects of ultrasound assisted cell wall disruption on physicochemical properties of camellia bee pollen protein isolates. Ultrason Sonochem. 2023;92:106249. http://doi.org/10.1016/j.ultsonch.2022.106249