Investigating changes in physicochemical, bioactive, and microbial properties of the cantaloupe pulp under ohmic heating treatment

##plugins.themes.bootstrap3.article.main##

Farah Jameel
Zunaira Arshad
Nabeel Ashraf
Nashi K. Alqahtani
Rokayya Sami
Fatin Alsami
Abeer Abu-zaid
Norah E. Aljohani
Bandar Alfaifi
Mahmoud Helal
Alanood A. Alfaleh
Ebtihaj O. Alnasri
Shatha
Tasahil S Albishi
Sameer H Qari

Keywords

Abstract

Cantaloupe (Cucumis melo L.) is a nutrient-rich, seasonal fruit with limited availability and short shelf life. This study evaluated the effects of conventional pasteurization (72°C, 2 min) and ohmic heating (60–72°C, 5–25 min at constant voltage 220V) on the physicochemical, phytochemical, microbial, and sensory properties of the cantaloupe pulp. Physicochemical and sensory analyses were performed over a period of 28 days at a refrigerator temperature (4°C). Ohmic heating significantly enhanced the retention of bioactive compounds and shelf life of the cantaloupe pulp. Total phenolic content increased by up to 2.07 times with time and 1.82 times with temperature, retaining 1.18 times more than conventional heating. Flavonoid content increased by 1.20 times with optimal ohmic conditions, preserving 0.77 times more than traditional methods. Antioxidant activity increased significantly by 53.7% with time, and 46.3% with temperature, yielding 1.19 times higher activity overall, and 1.15 times more than conventional heating. Vitamin C contents significantly increased by 1.37 times because of enhanced cell permeability. Microbial load was reduced by 1.25 times, with ohmic heating achieving 1.17 times greater microbial reduction than conventional treatment. Sensory analysis has higher scores for ohmic-treated samples, especially T9 (66°C, 5 min), which maintained better acceptability and quality of pulp throughout storage. Ohmic heating demonstrated significant potential for the cantaloupe pulp preservation, by assuring uniform heating, preserving sensorial attributes, and enhancing microbial safety and shelf life. These results demonstrated that ohmic heating is an effective, minimally destructive thermal technique with strong potential for application in fruit processing industries.

Abstract 48 | PDF (Inglese) Downloads 12 XML (Inglese) Downloads 1 HTML (Inglese) Downloads 0

Riferimenti bibliografici

Abedelmaksoud, T.G., Mohsen, S.M., Duedahl-Olesen, L., Elnikeety, M.M., Feyissa, A.H. 2018. Optimization of ohmic heating parameters for polyphenoloxidase inactivation in not-from-concentrate elstar apple juice using RSM. JFST. 55: 2420–2428. https://doi.org/10.1007/s13197-018-3159-1
Achir, N., Dhuique-Mayer, C., Hadjal, T., Madani, K., Pain, J.P., Dornier, M. 2016. Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. IFSET. 33: 397–404. https://doi.org/10.1016/j.ifset.2015.11.002
Ahmad, T., Senapati, A., Pandit, P., Bal, L. 2014. Evaluation of quality attributes during storage of guava nectar Cv. Lalit from Different Pulp and TSS Ratio. J. Food Process Technol. 329. https://doi.org/10.4172/2157-7110.1000329
Akhtar, S., Riaz, M., Ahmad, A., Nisar, A.J.P.J.B. 2010. Physico-chemical, microbiological and sensory stability of chemically preserved mango pulp. Pak. J. Bot. 42: 853–862.
Alcántara-Zavala, A., FIgueroa, J., Morales-Sánchez, E., Aldrete Tapia, J., Arvizu-Medrano, S., Martinez-Flores, H. 2019. Application of ohmic heating to extend shelf life and retain the physicochemical, microbiological, and sensory properties of pulque. Food Bioprod. Process. 118. https://doi.org/10.1016/j.fbp.2019.09.007
Alizadeh, O. and Aliakbarlu, J. 2020. Effects of ultrasound and ohmic heating pretreatments on hydrolysis, antioxidant and antibacterial activities of whey protein concentrate and its fractions. LWT. 131: 109913. https://doi.org/10.1016/j.lwt.2020.109913
Alkanan, Z.T., Altemimi, A.B., Al-Hilphy, A.R.S., Watson, D.G., Pratap-Singh, A. 2021. Ohmic heating in the food industry: Developments in concepts and applications during 2013-2020. Applied Sciences. 11. https://doi.org/10.3390/app11062507
Arshad, Z., Ashraf, N., Ali, A., Iqbal, A., Rafique, M., Gulzar, M., Ahmad, A., Hassan, S. 2025. Evaluation of the antioxidant and antimicrobial properties of pumpkin pulp during storage through the ultrasonication Process. FSE. 87–102. https://doi.org/10.37256/fse.6120255657
Athmaselvi, K., Kumar, C., Pushparaj, P. 2017. Influence of temperature, voltage gradient and electrode on ascorbic acid degradation kinetics during ohmic heating of tropical fruit pulp. J. Food Meas. Charact. 11. https://doi.org/10.1007/s11694-016-9381-5
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R.P., Chang, C.M. 2022. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 27. https://doi.org/10.3390/molecules27041326
Barrón-García, O.Y., Gaytán-Martínez, M., Ramírez-Jiménez, A.K., Luzardo-Ocampo, I., Velazquez, G., Morales-Sánchez, E. 2021. Physicochemical characterization and polyphenol oxidase inactivation of Ataulfo mango pulp pasteurized by conventional and ohmic heating processes. LWT. 143: 111113. https://doi.org/10.1016/j.lwt.2021.111113
Darvishi, H., Koushesh Saba, M., Behroozi-Khazaei, N., Nourbakhsh, H. 2020a. Improving quality and quantity attributes of grape juice concentrate (molasses) using ohmic heating. J. Food Sci. Technol. 57: 1362–1370. https://doi.org/10.1007/s13197-019-04170-1
Darvishi, H., Mohammadi, P., Fadavi, A., Saba, M.K., Behroozi-Khazaei, N. 2019. Quality preservation of orange concentrate by using hybrid ohmic-Vacuum heating. Food Chem. 289: 292–298. https://doi.org/10.1016/j.foodchem.2019.03.043
Darvishi, H., Salami, P., Fadavi, A., Saba, M.K. 2020b. Processing kinetics, quality and thermodynamic evaluation of mulberry juice concentration process using Ohmic heating. Food Bioprod. Process. 123: 102–110. https://doi.org/10.1016/j.fbp.2020.06.003
Demirdöven, A. and Baysal, T. 2014. Optimization of ohmic heating applications for pectin methylesterase inactivation in orange juice. J. Food Sci. Technol. 51: 1817–26. https://doi.org/10.1007/s13197-012-0700-5
Deshpande, S.A., Yamada, R., Mak, C.M., Hunter, B., Obando, A.S., Hoxha, S., Ja, W.W. 2015. Acidic food pH increases palatability and consumption and extends drosophila lifespan12. J. Nutr. 145: 2789–2796. https://doi.org/10.3945/jn.115.222380
Fadavi, A., Yousefi, S., Darvishi, H., Mirsaeedghazi, H. 2018. Comparative study of ohmic vacuum, ohmic, and conventional-vacuum heating methods on the quality of tomato concentrate. IFSET. 47: 225–230. https://doi.org/10.1016/j.ifset.2018.03.004
Ferreira, M.V.S., Cappato, L.P., Silva, R., Rocha, R.S., Neto, R.P.C., Tavares, M.I.B., Esmerino, E.A., Freitas, M.Q., Bissagio, R.C., Ranadheera, S., Raices, R.S.L., Silva, M.C., Cruz, A.G. 2019. Processing raspberry-flavored whey drink using ohmic heating: Physical, thermal and microstructural considerations. Food Res. Int. 123: 20–26. https://doi.org/10.1016/j.foodres.2019.04.045
Fonteles, T.V., Costa, M.G.M., De Jesus, A.L.T., De Miranda, M.R.A., Fernandes, F.A.N,. Rodrigues, S. 2012. Power ultrasound processing of cantaloupe melon juice: Effects on quality parameters. Food Res. Int.. 48: 41–48. https://doi.org/10.1016/j.foodres.2012.02.013
Fundo, J.F., Miller, F.A., Mandro, G.F., Tremarin, A., Brandão, T.R.S., Silva, C.L.M. 2019. UV-C light processing of Cantaloupe melon juice: Evaluation of the impact on microbiological, and some quality characteristics, during refrigerated storage. LWT. 103: 247–252. https://doi.org/10.1016/j.lwt.2019.01.025
Gomathy, K., Thangavel, K., Balakrishnan, M., Kasthuri, R. 2015. Effect of ohmic heating on the electrical conductivity, biochemical and rheological properties of papaya pulp. 38: 405–413. https://doi.org/10.1111/jfpe.12172
Hashemi, S.M.B., Gholamhosseinpour, A., Niakousari, M. 2019. Application of microwave and ohmic heating for pasteurization of cantaloupe juice: Microbial inactivation and chemical properties. J. Sci. Food Agric. 99: 4276–4286. https://doi.org/10.1002/jsfa.9660
Hashemi, S.M.B. and Jafarpour, D. 2022. Ohmic heating application in food processing: Recent achievements and perspectives. Foods and Raw Mater. 216–223. https://doi.org/10.21603/2308-4057-2022-2-531
Imtiaz, H., Alam, Z., Iftikhar, S., Shah, S. 2008. Combine effect of potassium sorbate and sodium benzoate on individual and blended juices of apricot and apple fruits grown in Azad Jammu and Kashmir. Pakistan. J. Nutr. 7. https://doi.org/10.3923/pjn.2008.181.185
Indiarto, R. and Rezaharsamto, B. 2020. A review on ohmic heating and its use in food. IJSTR. 9: 485–490.
Ishita, C. and Athmaselvi, K. 2017. Changes in pH and colour of watermelon juice during ohmic heating. Int. Food Res. J. 24: 741–746.
Jaeschke, D.P., Marczak, L.D.F., Mercali, G.D. 2016. Evaluation of non-thermal effects of electricity on ascorbic acid and carotenoid degradation in acerola pulp during ohmic heating. Food Chem. 199: 128–134. https://doi.org/10.1016/j.foodchem.2015.11.117
Karoney, E.M., Molelekoa, T., Bill, M., Siyoum, N., Korsten, L. 2024. Global research network analysis of fresh produce postharvest technology: Innovative trends for loss reduction. Postharvest Biol. Technol. 208: 112642. https://doi.org/10.1016/j.postharvbio.2023.112642
Makroo, H., Saxena, J., Rastogi, N., Srivastava, B. 2016. Ohmic heating assisted polyphenol oxidase inactivation of watermelon juice: Effects of the treatment on pH, lycopene, total phenolic content, and color of the juice. J. Food Process Preserv. 41. https://doi.org/10.1111/jfpp.13271
Makroo, H.A., Prabhakar, P.K., Rastogi, N.K., Srivastava, B. 2019. Characterization of mango puree based on total soluble solids and acid content: Effect on physico-chemical, rheological, thermal and ohmic heating behavior. LWT. 103: 316–324. https://doi.org/10.1016/j.lwt.2019.01.003
Malik, A., B, A., A, V. & K, R. 2016. Preparation and evaluation of peach-soy fruit toffees. JFIM. 02. https://doi.org/10.4172/2572-4134.1000114
Mallek-Ayadi, S., Bahloul, N., Kechaou, N. 2017. Characterization, phenolic compounds and functional properties of Cucumis melo L. peels. Food Chem. 221: 1691–1697. https://doi.org/10.1016/j.foodchem.2016.10.117
Manchali, S., Chidambara Murthy, K.N., Vishnuvardana, Patil, B.S. 2021. Nutritional composition and health benefits of various botanical types of melon (Cucumis melo L.). Plants (Basel). 10. https://doi.org/10.3390/plants10091755
Mandha, J., Shumoy, H., Matemu, A.O., Raes, K. 2023. Characterization of fruit juices and effect of pasteurization and storage conditions on their microbial, physicochemical, and nutritional quality. Food Biosci. 51: 102335. https://doi.org/10.1016/j.fbio.2022.102335
Mannozzi, C., Rompoonpol, K., Fauster, T., Tylewicz, U., Romani, S., Dalla R.M., Jaeger, H. 2019. Influence of pulsed electric field and ohmic heating pretreatments on enzyme and antioxidant activity of fruit and vegetable juices. 8: 247. https://doi.org/10.3390/foods8070247
Miller, F.A., Fundo, J.F., Silva, C.L.M., Brandão, T.R.S. 2018. Physicochemical and bioactive compounds of ‘Cantaloupe’ Melon: Effect of ozone processing on pulp and seeds. OS&E. 40: 209–215. https://doi.org/10.1080/01919512.2017.1414582
Narra, F., Piragine, E., Benedetti, G., Ceccanti, C., Florio, M., Spezzini, J., Troisi, F., Giovannoni, R., Martelli, A., Guidi, L. 2024. Impact of thermal processing on polyphenols, carotenoids, glucosinolates, and ascorbic acid in fruit and vegetables and their cardiovascular benefits. Compr. Rev. Food Sci. Food Saf. 23: e13426. https://doi.org/10.1111/1541-4337.13426
Orqueda, M.E., Torres, S., Verón, H., Pérez, J., Rodriguez, F., Zampini, C., Isla, M.I. 2021. Physicochemical, microbiological, functional and sensory properties of frozen pulp of orange and orange-red chilto (Solanum betaceum Cav.). Fruits. 276: 109736. https://doi.org/10.1016/j.scienta.2020.109736
Priyadarshini, A., Rayaguru, K., Routray, W., Biswal, A.K., Misra, P.K. 2023. Ascertaining optimal ohmic-heating characteristics for preserving mango (Mangifera indica l.) pulp through analysis of physicochemical properties and hurdles effect. Food Chem. Adv. 3: 100458. https://doi.org/10.1016/j.focha.2023.100458
Pushparaj, P. and Athmaselvi, K. 2016. Stability and storage studies on banana pulp by ohmic heating and conventional heating. Biosci. Biotechnol. Res. Asia. 13: 1231–1238. https://doi.org/10.13005/bbra/2157
Rinaldi, M., Littardi, P., Ganino, T., Aldini, A., Rodolfi, M., Barbanti, D., Chiavaro, E. 2020. Comparison of physical, microstructural, antioxidant and enzymatic properties of pineapple cubes treated with conventional heating, ohmic heating and high-pressure processing. LWT. 134: 110207. https://doi.org/10.1016/j.lwt.2020.110207
Rios, K.L., Gaytán-Martínez, M., Rivera-Pastrana, D.M., Morales-Sánchez, E., Villamiel, M., Montilla, A., Mercado-Silva, E.M., Vázquez-Barrios, M.E. 2021. Ohmic heating pretreatment accelerates black garlic processing. LWT. 151: 112218. https://doi.org/10.1016/j.lwt.2021.112218
Rodrigues, N.P., Brochier, B., De Medeiros, J.K., Marczak, L.D.F., Mercali, G.D. 2021. Phenolic profile of sugarcane juice: Effects of harvest season and processing by ohmic heating and ultrasound. Food Chem. 347: 129058. https://doi.org/10.1016/j.foodchem.2021.129058
Rodríguez, N.L.M., Arias, R., Soteras, T., Sancho, A., Pesquero, N., Rossetti, L., Tacca, H., Aimaretti, N., Rojas Cervantes, M.L., Szerman, N. 2021. Comparison of the quality attributes of carrot juice pasteurized by ohmic heating and conventional heat treatment. LWT. 145: 111255. https://doi.org/10.1016/j.lwt.2021.111255
Sarkis, J.R., Jaeschke, D.P., Tessaro, I.C., Marczak, L.D.F. 2013. Effects of ohmic and conventional heating on anthocyanin degradation during the processing of blueberry pulp. LWT. 51: 79–85. https://doi.org/10.1016/j.lwt.2012.10.024
Silva, M.A., Albuquerque, T.G., Alves, R.C., Oliveira, M.B.P.P., Costa, H.S. 2020. Melon (Cucumis melo L.) by-products: Potential food ingredients for novel functional foods? Trends Food Sci. Technol. 98: 181–189. https://doi.org/10.1016/j.tifs.2018.07.005
Singla, G., Panesar, P.S., Sangwan, R.S., Krishania, M. 2021. Effect of packaging materials on the shelf-life of vermicelli supplemented with enzyme processed kinnow pulp residue. J. Food Process Eng. 45: e13862. https://doi.org/10.1111/jfpe.13862
Stadlmayr, B., Wanangwe, J., Waruhiu, C.G., Jamnadass, R., Kehlenbeck, K. 2020. Nutritional composition of baobab (Adansonia digitata L.) fruit pulp sampled at different geographical locations in Kenya. J. Food Compos. Anal. 94: 103617. https://doi.org/10.1016/j.jfca.2020.103617
Tan, S.L., Sulaiman, R., Rukayadi, Y., Ramli, N.S. 2021. Physical, chemical, microbiological properties and shelf life kinetic of spray-dried cantaloupe juice powder during storage. LWT. 140: 110597. https://doi.org/10.1016/j.lwt.2020.110597
Torgbo, S., Sukatta, U., Kamonpatana, P., Sukyai, P. 2022. Ohmic heating extraction and characterization of rambutan (Nephelium lappaceum L.) peel extract with enhanced antioxidant and antifungal activity as a bioactive and functional ingredient in white bread preparation. Food Chem. 382: 132332. https://doi.org/10.1016/j.foodchem.2022.132332