Investigating on the inhibition of high-maturity mango storage diseases by antimicrobial Peptide PNMGL2 through induction and suppression of reactive oxygen metabolism
Main Article Content
Keywords
antagonistic preservation; mango anthracnose; storage; reactive oxygen species; glutathione pathway
Abstract
High-maturity mangoes are highly susceptible to decay during postharvest storage, posing significant challenges for preservation. This study investigated the effects of the antimicrobial peptide PNMGL2 on reactive oxygen spe-cies (ROS) metabolism and postharvest disease incidence in mangoes. Mangoes were treated with 0.25 mg/L, 0.50 mg/L, and 0.75 mg/L PNMGL2 in combination with a 2 g/100 mL chitosan coating. Results demonstrated that the combination of chitosan and PNMGL2 significantly reduced anthracnose incidence compared to the untreated control (CK group). On the 12th day of storage, mangoes treated with 0.50 mg/L PNMGL2-chitosan exhibited higher firmness and titratable acid content than other groups. Furthermore, malondialdehyde (MDA), hydrogen peroxide (H₂O₂), and superoxide anion levels decreased by 23.76%, 17.02%, and 40.14%, respectively, while the activities of catalase (CAT), peroxidase (POD), glutathione peroxidase (GPX), and glutathione (GSH) increased by 18.73%, 35.42%, 52.58%, and 68.63%, respectively. The CH-0.50P treatment effectively mitigated ROS accumula-tion and delayed the decline in key antioxidant enzyme activities (SOD, CAT, APX, POD). This treatment not only preserved the quality and nutritional value of mangoes but also significantly prolonged their shelf life, providing valuable insights for the development of advanced mango preservation technologies.
References
Averill-Bates, D. A. (2023). The antioxidant glutathione. In Antioxidants (pp. 109-141). https://doi.org/10.1016/bs.vh.2022.09.002
Balcı, G., Aras, S., & Keles, H. (2021). Exogenous EBL (24-Epibrassinolide) Alleviate Cold Damage in Strawberry. Erwerbs-Obstbau, 63(3), 273-278. https://doi.org/10.1007/s10341-021-00566-6
Cao, M., Wang, X., Su, J., Lu, Z., Li, Y., & Gao, H. (2021). Delayed senescence of kiwifruit by p-coumaric acid pretreatment during storage at 20 °C: Toward regulating the ascorbate–glutathione cycle and phenolic anabolism. Scientia Horticulturae, 280. https://doi.org/10.1016/j.scienta.2021.109913
Chang, J., Mapuranga, J., Wang, X., Dong, H., Li, R., Zhang, Y., Li, H., Shi, J., & Yang, W. (2024). A thaumatin‐like effector protein suppresses the rust resistance of wheat and promotes the pathogenicity of Puccinia triticina by targeting TaRCA. New Phytologist, 244(5), 1947-1960. https://doi.org/10.1111/nph.20142
Chang, L., Xu, L., Yang, Z., Liu, L., & Qiu, D. (2023). Antibacterial and antioxidative biogenic films for room-temperature strawberry preservation. Food Chemistry, 405. https://doi.org/10.1016/j.foodchem.2022.134893
Chomba, G., Ambuko, J., Onyango, C., & Ouko, J. R. (2025). Effect of different 1-methylcyclopropene formulations and dosing on the ripening profile of Tommy Atkins mango fruits. Frontiers in Horticulture, 4. https://doi.org/10.3389/fhort.2025.1509989
Fan, S., Xiong, T., Lei, Q., Tan, Q., Cai, J., Song, Z., Yang, M., Chen, W., Li, X., & Zhu, X. (2022). Melatonin Treatment Improves Postharvest Preservation and Resistance of Guava Fruit (Psidium guajava L.). Foods, 11(3). https://doi.org/10.3390/foods11030262
Feng, X., Li, S., Sun, Z., Yuan, H., Li, R., Yu, N., Zhang, Y., & Chen, X. (2024). The Preservation Effect of Chitosan-hawthorn Leaf Extract Coating on Strawberries. Journal of Food Protection, 87(4). https://doi.org/10.1016/j.jfp.2024.100244
Ge, Y., Deng, H., Bi, Y., Li, C., Liu, Y., & Dong, B. (2015). Postharvest ASM dipping and DPI pre-treatment regulated reactive oxygen species metabolism in muskmelon (Cucumis melo L.) fruit. Postharvest Biology and Technology, 99, 160-167. https://doi.org/10.1016/j.postharvbio.2014.09.001
Hasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiology and Molecular Biology of Plants, 23(2), 249-268. https://doi.org/10.1007/s12298-017-0422-2
He, Y., Qiu, T., Liu, B., Wang, L., Chu, P., Jabbir, F., Aziz, T., Shami, A., Al-Asmari, F., Al-Joufi, F. A., Sun, J., & Zhang, M. (2025). Application of antagonistic antibacterial activity cling film in extending the shelf life of perishable agricultural products. Italian Journal of Food Science, 37(2), 295-318. https://doi.org/10.15586/ijfs.v37i2.2838
Hewitt, S., & Dhingra, A. (2020). Beyond Ethylene: New Insights Regarding the Role of Alternative Oxidase in the Respiratory Climacteric. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.543958
Huang, Y., Gao, L., Lin, M., & Yu, T. (2021). Recombinant expression of antimicrobial peptides in Pichia pastoris: A strategy to inhibit the Penicillium expansum in pears. Postharvest Biology and Technology, 171. https://doi.org/10.1016/j.postharvbio.2020.111298
K R, G., Balenahalli Narasingappa, R., & Vishnu Vyas, G. (2024). Unveiling mechanisms of antimicrobial peptide: Actions beyond the membranes disruption. Heliyon, 10(19). https://doi.org/10.1016/j.heliyon.2024.e38079
Kong, J., Zhang, Y., Ju, J., Xie, Y., Guo, Y., Cheng, Y., Qian, H., Quek, S. Y., & Yao, W. (2019). Antifungal effects of thymol and salicylic acid on cell membrane and mitochondria of Rhizopus stolonifer and their application in postharvest preservation of tomatoes. Food Chemistry, 285, 380-388. https://doi.org/10.1016/j.foodchem.2019.01.099
Li, W., Chen, H., Cheng, J., Zhang, M., Xu, Y., Wang, L., Zhao, X., Zhang, J., Liu, B., & Sun, J. (2024). Improving Resistance of Mango to Colletotrichum gloeosporioides by Activating Reactive Oxygen Species and Phenylpropane Metabolism of Bacillus amyloliquefaciens GSBa-1. Metabolites, 14(8). https://doi.org/10.3390/metabo14080417
Lin, Y., Lin, H., Wang, H., Lin, M., Chen, Y., Fan, Z., Hung, Y.-C., & Lin, Y. (2020). Effects of hydrogen peroxide treatment on pulp breakdown, softening, and cell wall polysaccharide metabolism in fresh longan fruit. Carbohydrate Polymers, 242. https://doi.org/10.1016/j.carbpol.2020.116427
Liu, B., Xin, Q., Zhang, M., Chen, J., Lu, Q., Zhou, X., Li, X., Zhang, W., Feng, W., Pei, H., & Sun, J. (2022). Research Progress on Mango Post-Harvest Ripening Physiology and the Regulatory Technologies. Foods, 12(1). https://doi.org/10.3390/foods12010173
Liu, S., Wang, W., Deng, L., Ming, J., Yao, S., & Zeng, K. (2019). Control of sour rot in citrus fruit by three insect antimicrobial peptides. Postharvest Biology and Technology, 149, 200-208. https://doi.org/10.1016/j.postharvbio.2018.11.025
Mishra, N., Jiang, C., Chen, L., Paul, A., Chatterjee, A., & Shen, G. (2023). Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1110622
Molinos, A. C., Abriouel, H., Ben Omar, N., Lucas, R., Valdivia, E., & Gálvez, A. (2008). Inactivation of Listeria monocytogenes in Raw Fruits by Enterocin AS-48. Journal of Food Protection, 71(12), 2460-2467. https://doi.org/10.4315/0362-028x-71.12.2460
Panday, S., Talreja, R., & Kavdia, M. (2020). The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvascular Research, 131. https://doi.org/10.1016/j.mvr.2020.104010
Pang, X., Huang, Y., Xiao, N., Wang, Q., Feng, B., & Ali Shad, M. (2024). Effect of EVA film and chitosan coating on quality and physicochemical characteristics of mango fruit during postharvest storage. Food Chemistry: X, 21. https://doi.org/10.1016/j.fochx.2024.101169
Pérez-Lamela, C., Franco, I., & Falqué, E. (2021). Impact of High-Pressure Processing on Antioxidant Activity during Storage of Fruits and Fruit Products: A Review. Molecules, 26(17). https://doi.org/10.3390/molecules26175265
Ren, Q., Zhang, M., Xue, R., Liu, T., Yang, Z., & Yang, Z. (2023). Purification and characterization of a novel low-molecular-weight antimicrobial peptide produced by Lactiplantibacillus plantarum NMGL2. International Journal of Biological Macromolecules, 248. https://doi.org/10.1016/j.ijbiomac.2023.125932
Rodriguez, P., Villamizar, J., & Rebolledo, A. (2025). Impact of Fruit Development Age on Postharvest Quality of Hass Avocado. International Journal of Fruit Science, 25(1), 18-35. https://doi.org/10.1080/15538362.2025.2480570
Shankar, S., Mohanty, A. K., DeEll, J. R., Carter, K., Lenz, R., & Misra, M. (2024). Advances in antimicrobial techniques to reduce postharvest loss of fresh fruit by microbial reduction. npj Sustainable Agriculture, 2(1). https://doi.org/10.1038/s44264-024-00029-x
Su, X., Yao, L., Wang, X., Zhang, Y., Zhang, G., & Li, X. (2025). Mechanisms for cell survival during abiotic stress: focusing on plasma membrane. Stress Biology, 5(1). https://doi.org/10.1007/s44154-024-00195-5
Tahir, H., Sajjad, M., Qian, M., Zeeshan Ul Haq, M., Tahir, A., Chen, T., Shaopu, S., Farooq, M. A., Ling, W., & Zhou, K. (2024). Transcriptomic Analysis Reveals Dynamic Changes in Glutathione and Ascorbic Acid Content in Mango Pulp across Growth and Development Stages. Horticulturae, 10(7). https://doi.org/10.3390/horticulturae10070694
Tokatlı, K., & Demirdöven, A. (2020). Influences of chitosan coatings on functional compounds of sweet cherries. Journal of Food Science and Technology, 58(5), 1808-1818. https://doi.org/10.1007/s13197-020-04692-z
Vašková, J., Kočan, L., Vaško, L., & Perjési, P. (2023). Glutathione-Related Enzymes and Proteins: A Review. Molecules, 28(3). https://doi.org/10.3390/molecules28031447
Wang, H., Wang, J., Mujumdar, A. S., Jin, X., Liu, Z.-L., Zhang, Y., & Xiao, H.-W. (2021). Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (Actinidia deliciosa). Food Hydrocolloids, 118. https://doi.org/10.1016/j.foodhyd.2021.106808
Wang, L., Liu, B., Zhang, M., Sun, J., Zhou, X., Cheng, J., & Guo, X. (2024). Effect of food-borne antagonistic bacteria-chitosan coating on reactive oxygen metabolism and pathogenesis during the shelf life of postharvest mango. Transactions of the Chinese Society of Agricultural Engineering. https://doi.org/10.11975/j.issn.1002-6819.202403058
Wei, S., Mei, J., & Xie, J. (2021). Effects of Edible Coating and Modified Atmosphere Technology on the Physiology and Quality of Mangoes after Low-Temperature Transportation at 13 °C in Vibration Mitigation Packaging. Plants, 10(11). https://doi.org/10.3390/plants10112432
Wei, W., Liu, Z., Pan, X., Yang, T., An, C., Wang, Y., Li, L., Liao, W., & Wang, C. (2025). Effects of reactive oxygen species on fruit ripening and postharvest fruit quality. Plant Science, 352. https://doi.org/10.1016/j.plantsci.2025.112391
Worku, S., Alemu, K., & Tsedaley, B. (2025). Combining plant extracts and hot water treatments for the management of postharvest mango anthracnose (Colletotrichum gloeosporioides). Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-89587-9
Xu, Y., Cai, Z., Ba, L., Qin, Y., Su, X., Luo, D., Shan, W., Kuang, J., Lu, W., Li, L., Chen, J., & Zhao, Y. (2021). Maintenance of Postharvest Quality and Reactive Oxygen Species Homeostasis of Pitaya Fruit by Essential Oil p-Anisaldehyde Treatment. Foods, 10(10). https://doi.org/10.3390/foods10102434
Yan, X., Meng, F., Van, T. T., Wigati, L. P., Nkede, F. N., Hamayoon, W. M., Wardana, A. A., Tanaka, F., & Tanaka, F. (2024). Water barrier coating of chitosan/poly (vinyl alcohol)/trans-cinnamaldehyde regulated postharvest quality and reactive oxygen species metabolism of ‘Frutica’ tomato (Solanum lycopersicum L.). Postharvest Biology and Technology, 212. https://doi.org/10.1016/j.postharvbio.2024.112910
Zhang, X., Zhou, H., Han, Z., Huang, W., Gu, X., Li, B., Zhao, L., Zhou, S., & Zhang, H. (2022). Pichia caribbica combined with oligochitosan controlling black spot of tomatoes and the regulation on ROS metabolism of the fruits. Biological Control, 176. https://doi.org/10.1016/j.biocontrol.2022.105109
Zhou, C., Bai, J., Zhang, F., Zhang, R., Zhang, X., Zhong, K., & Yan, B. (2023). Development of mussel-inspired chitosan-derived edible coating for fruit preservation. Carbohydrate Polymers, 321. https://doi.org/10.1016/j.carbpol.2023.121293
Zhou, X., Cheng, J., Sun, J., Guo, S., Guo, X., Chen, Q., Wang, X., Zhu, X., & Liu, B. (2023). Effect of Red Visible Lighting on Postharvest Ripening of Bananas via the Regulation of Energy Metabolism. Horticulturae, 9(7). https://doi.org/10.3390/horticulturae9070840
Zhu, S., Liu, J., Yang, Q., Jin, Y., Zhao, S., Tan, Z., Qiu, J., & Zhang, H. (2023). The Impact of Mechanical Compression on the Postharvest Quality of ‘Shine Muscat’ Grapes during Short-Term Storage. Agronomy, 13(11). https://doi.org/10.3390/agronomy13112836