Amaranth protein–cacao pectin/phenolic extract complex
Main Article Content
Keywords
Abstract
Agricultural waste can be successfully channeled into organic components with improved functional properties. The interactions between Amaranth protein (AP), cacao pod husk pectin (CP), in 2:1 and 5:1 weight ratios, and cacao shell/husk phenolic extract (PE) (0.0, 0.1, 0.5% w/v), were conducted at pH 3 to produce ternary complex coacervates (CC). CC displayed ζ-potential values approaching charge neutrality; FTIR spectra showed transposed peaks; SEM micrographs revealed heterogeneous and porous structures, which were distinct from those exhibited by the individual components. CC yield and antioxidant activity were higher as the AP:CP weight ratio and PE concentration increased. CC may be considered promising ingredients for developing novel food products with enhanced properties.
References
AOAC. (1996). Official methods of analysis (16th ed.). AOAC International.
Banjare, I. S., Gandhi, K., Sao, K., & Sharma, R. (2019). Spray-dried whey protein concentrate-iron complex: Preparation and physicochemical characterization. Food Technology and Biotechnology, 57(3), 331–340. https://doi.org/10.17113/ftb.57.03.19.6228
Campos-Vega, R., Nieto-Figueroa, K. H., & Oomah, B. D. (2018). Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends in Food Science & Technology, 81, 172–184. https://doi.org/10.1007/s11694-021-01228-7
Cantele, C., Rojo-Poveda, O., Bertolino, M., Ghirardello, D., Cardenia, V., Barbosa-Pereira, L., & Zeppa, G. (2020). In vitro bioaccessibility and functional properties of phenolic compounds from enriched beverages based on cocoa bean shell. Foods, 9(6), Article 715. https://doi.org/10.3390/foods9060715
Castel, V., Andrich, O., Netto, F. M., Santiago, L. G., & Carrara, C. R. (2014). Total phenolic content and antioxidant activity of different streams resulting from pilot-plant processes to obtain Amaranthus mantegazzianus protein concentrates. Journal of Food Engineering, 122, 62–67. https://doi.org/10.1016/j.jfoodeng.2013.08.032
Chang, P. G., Gupta, R., Timilsena, Y. P., & Adhikari, B. (2016). Optimisation of the complex coacervation between canola protein isolate and chitosan. Journal of Food Engineering, 191, 58–66. https://doi.org/10.1016/j.jfoodeng.2016.07.008
Constantino, A. B. T., & Garcia-Rojas, E. E. (2022). Microencapsulation of betanin by complex coacervation of carboxymethylcellulose and amaranth protein isolate for application in edible gelatin films. Food Hydrocolloids, 133, 107956. https://doi.org/10.1016/j.foodhyd.2022.107956
Cortés-Viguri, V., Hernández-Rodríguez, L., Lobato-Calleros, C., Cuevas-Bernardino, J. C., Hernández-Rodríguez, B. E., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2021). Annatto (Bixa orellana L.), a potential novel starch source: Antioxidant, microstructural, functional, and digestibility properties. Journal of Food Measurement and Characterization, 16(1), 637–651. https://doi.org/10.1007/s11694-021-01228-7
de Souza, V. B., Thomazini, M., Echalar Barrientos, M. A., Nalin, C. M., Ferro-Furtado, R., Genovese, M. I., & Favaro-Trindade, C. S. (2018). Functional properties and encapsulation of a proanthocyanidin-rich cinnamon extract (Cinnamomum zeylanicum) by complex coacervation using gelatin and different polysaccharides. Food Hydrocolloids, 77, 297–306. https://doi.org/10.1016/j.foodhyd.2017.09.040
Espinosa-Andrews, H., Báez-González, J. G., Cruz-Sosa, F., & Vernon-Carter, E. J. (2007). Gum arabic-chitosan complex coacervation. Biomacromolecules, 8(4), 1313–1318. https://doi.org/10.1021/bm0611634
Eze, F. N., Jayeoye, T. J., & Singh, S. (2022). Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken riceberry phenolic extract. Food Chemistry, 366, Article 130574. https://doi.org/10.1016/j.foodchem.2021.130574
Figueroa-González, J. J., Lobato-Calleros, C., Vernon-Carter, E. J., Aguirre-Mandujano, E., López-Monterrubio, D. I., & Alvarez-Ramirez, J. (2025). Physicochemical characterization and in vitro digestibility of modified amaranth protein/octenyl succinic anhydride-modified corn starch insoluble complexes. Acta Scientiarum Polonorum Technologia Alimentaria, 24(1), 47–65. https://doi.org/10.17306/J.AFS.001268
Gaber-Ahmed, G. H., Fernández-González, A., & Díaz García, M. E. (2020). Nano-encapsulation of grape and apple pomace phenolic extract in chitosan and soy protein via nanoemulsification. Food Hydrocolloids, 108, 105806. https://doi.org/10.1016/j.foodhyd.2020.105806
García-de la Rosa, K., Lobato-Calleros, C., Hernández-Rodríguez, L., & Aguirre-Mandujano, E. (2023). Rheological and structural properties of complex coacervates of Amaranthus hypochondriacus protein-citrus pectin. Revista Mexicana de Ingeniería Química, 22(1), 1–18. https://doi.org/10.24275/rmiq/Alim3003
Ghobadi, M., Koocheki, A., Varidi, M. J., & Varidi, M. (2020). Fabrication and characterization of Grass pea (Lathyrus sativus) protein isolate–Alyssum homolocarpum seed gum complex coacervate. Polymer Testing, 89, 106636. https://doi.org/10.1016/j.polymertesting.2020.106636
Hadidi, M., Aghababaei, F., Mahfouzi, M., Zhang, W., & McClements, D. J. (2024). Amaranth proteins: From extraction to application as nanoparticle-based delivery systems for bioactive compounds. Food Chemistry, 439, 138164. https://doi.org/10.1016/j.foodchem.2023.138164
Hashemi-Gahruie, H., Mirzapour, A., Ghiasi, F., Eskandari, M. H., Moosavi-Nasab, M., & Hosseini, S. M. H. (2022). Development and characterization of gelatin and Persian gum composite edible films through complex coacervation. LWT – Food Science and Technology, 153, 112422. https://doi.org/10.1016/j.lwt.2021.112422
Hernández-Rodríguez, L., Lobato-Calleros, C., Pimentel-González, D. J., & Vernon-Carter, E. J. (2014). Lactobacillus plantarum protection by entrapment in whey protein isolate: κ-carrageenan complex coacervates. Food Hydrocolloids, 36, 181–188. https://doi.org/10.1016/j.foodhyd.2013.09.018
Huang, X., Huang, X., Gong, Y., Xiao, H., McClements, D. J., & Hu, K. (2016). Enhancement of curcumin water dispersibility and antioxidant activity using core-shell protein-polysaccharide nanoparticles. Food Research International, 87, 1–9. https://doi.org/10.1016/j.foodres.2016.06.009
Hutomo, G. S., Rahim, A., & Kadir, S. (2016). Pectin isolation from dry pod husk cocoa with hydrochloride acid. International Journal of Current Microbiology and Applied Sciences, 5(11), 751–756. https://doi.org/10.20546/ijcmas.2016.511.086
Kashyap, P., Riar, C. S., & Jindal, N. (2022). Effect of extraction methods and simulated in vitro gastrointestinal digestion on phenolic compound profile, bio-accessibility, and antioxidant activity of Meghalayan cherry (Prunus nepalensis) pomace extracts. LWT – Food Science and Technology, 153, 112570. https://doi.org/10.1016/j.lwt.2021.112570
Kim, M. J., Ju, H. K., Kim, Y., Yoo, S.-H., & Kim, Y.-S. (2016). Effects of amidation and/or methylesterification of pectin on aroma release at different calcium concentration. Food Hydrocolloids, 52, 343–349. https://doi.org/10.1016/j.foodhyd.2015.07.006
Koralegedara, I. D., Hettiarachchi, C. A., Prasantha, B. D. R., & Wimalasiri, K. M. S. (2020). Synthesis of nano-scale biopolymer particles from legume protein isolates and carrageenan. Food Technology and Biotechnology, 58(2), 214–222. https://doi.org/10.17113/ftb.58.02.20.6279
Kuck, L. S., & Noreña, C. P. (2016). Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chemistry, 194, 569–576. https://doi.org/10.1016/j.foodchem.2015.08.066
Lan, Y., Ohm, J.-B., Chen, B., & Rao, J. (2020). Phase behavior, thermodynamic and microstructure of concentrated pea protein isolate-pectin mixture: Effect of pH, biopolymer ratio and pectin charge density. Food Hydrocolloids, 101, 105556. https://doi.org/10.1016/j.foodhyd.2019.105556
Li, R., Zeng, Z., Fu, G., Wan, Y., Liu, C., & McClements, D. J. (2019). Formation and characterization of tannic acid/beta-glucan complexes: Influence of pH, ionic strength, and temperature. Food Research International, 120, 748–755. https://doi.org/10.1016/j.foodres.2018.11.034
Li, Y., Zhang, X., Sun, N., Wang, Y., & Lin, S. (2018). Formation and evaluation of casein-gum arabic coacervates via pH-dependent complexation using fast acidification. International Journal of Biological Macromolecules, 120(Pt A), 783–788. https://doi.org/10.1016/j.ijbiomac.2018.08.145
Malvern Instruments Limited. (2015). Zeta potential—An introduction in 30 minutes (Technical Note). https://www.research.colostate.edu/wp-content/uploads/2018/11/ZetaPotential-Introduction-in-30min-Malvern.pdf
Manzano, P., Hernández, J., Quijano-Avilés, M., Barragán, A., Chóez-Guaranda, I., Viteri, R., & Valle, O. (2017). Polyphenols extracted from Theobroma cacao waste and its utility as antioxidant. Emirates Journal of Food and Agriculture, 29(1), 45–50. https://doi.org/10.9755/ejfa.2016-04-388
Muhoza, B., Xia, S., Wang, X., & Zhang, X. (2020). The protection effect of trehalose on the multinuclear microcapsules based on gelatin and high methyl pectin coacervate during freeze-drying. Food Hydrocolloids, 105, 105807. https://doi.org/10.1016/j.foodhyd.2021.107239
Murcia, K. S., & Castañeda, M. d. R. (2022). Evaluation of the content of total phenols and antioxidant capacity of ethanolic extracts of cocoa shell (Theobroma cacao L.). Revista de Investigación Agraria y Ambiental, 13(2), 53–65. https://doi.org/10.22490/21456453.4717
Nieto-Figueroa, K. H., Mendoza-Garcia, N. V., Gaytan-Martinez, M., Wall-Medrano, A., Guadalupe Flavia Loarca-Pina, M., & Campos-Vega, R. (2020). Effect of drying methods on the gastrointestinal fate and bioactivity of phytochemicals from cocoa pod husk: In vitro and in silico approaches. Food Research International, 137, 109725. https://doi.org/10.1016/j.foodres.2020.109725
Pan-Utai, W., & Iamtham, S. (2020). Enhanced microencapsulation of C-Phycocyanin from Arthrospira by freeze-drying with different wall materials. Food Technology and Biotechnology, 58(4), 423–432. https://doi.org/10.17113/ftb.58.04.20.6622
Raei, M., Rafe, A., & Shahidi, F. (2018). Rheological and structural characteristics of whey protein-pectin complex coacervates. Journal of Food Engineering, 228, 25–31. https://doi.org/10.1016/j.jfoodeng.2018.02.007
Ramírez-Santiago, C., Lobato-Calleros, C., Espinosa-Andrews, H., & Vernon-Carter, E. J. (2012). Viscoelastic properties and overall sensory acceptability of reduced-fat Petit-Suisse cheese made by replacing milk fat with complex coacervate. Dairy Science & Technology, 92(4), 383–398. https://doi.org/10.1007/s13594-012-0077-2
Rosenberg, A., Solomonov, A., Cohen, H., Eliaz, D., Kellersztein, I., Brookstein, O., Kozell, A., Wang, L., Wagner, H. D., Daraio, C., & Shimanovich, U. (2024). From basic principles of protein–polysaccharide association to the rational design of thermally sensitive materials. ACS Applied Materials & Interfaces, 16(7), 9210–9223. https://doi.org/10.1021/acsami.3c12926
Salminen, H., & Weiss, J. (2014). Effect of pectin type on association and pH stability of whey protein-pectin complexes. Food Biophysics, 9(1), 29–38. https://doi.org/10.1007/s11483-013-9314-3
Shahidi, F., & Senadheera, R. (2019). Protein–phenol interactions. In L. Melton, F. Shahidi, & R. Senadheera (Eds.), Encyclopedia of food chemistry (pp. 532–538). Academic Press.
SIAP. (2023). Progress of sowing and harvesting, summary by state. Mexico: Agri-Food and Fisheries Information Service. https://nube.agricultura.gob.mx/cierre_agricola/
Trujillo-Ramírez, D., Lobato-Calleros, C., Román-Guerrero, A., Hernández-Rodríguez, L., Alvarez-Ramirez, J., & Vernon-Carter, E. J. (2018). Complexation with whey protein hydrolysate improves cacao pod husk pectin surface active and emulsifying properties. Reactive and Functional Polymers, 123, 61–69. https://doi.org/10.1016/j.reactfunctpolym.2017.12.011
Vargas, S. A., Delgado-Macuil, R. J., Ruiz-Espinosa, H., Rojas-Lopez, M., & Amador-Espejo, G. G. (2021). High-intensity ultrasound pretreatment influence on whey protein isolate and its use on complex coacervation with kappa carrageenan: Evaluation of selected functional properties. Ultrasonics Sonochemistry, 70, 105340. https://doi.org/10.1016/j.ultsonch.2020.105340
Ventureira, J. L., Bolontrade, A. J., Speroni, F., David-Briand, E., Scilingo, A. A., Ropers, M.-H., Boury, F., Añón, M. C., & Anton, M. (2012). Interfacial and emulsifying properties of amaranth (Amaranthus hypochondriacus) protein isolates under different conditions of pH. LWT - Food Science and Technology, 45(1), 1–7. https://doi.org/10.1016/j.lwt.2011.07.024
Vriesmann, L. C., Teófilo, R. F., & de Oliveira Petkowicz, C. L. (2012). Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid. LWT - Food Science and Technology, 49(1), 108–116. https://doi.org/10.1016/j.lwt.2012.04.018
Wang, C., Sun, C., Lu, W., Gul, K., Mata, A., & Fang, Y. (2020). Emulsion structure design for improving the oxidative stability of polyunsaturated fatty acids. Comprehensive Reviews in Food Science and Food Safety, 19(6), 2955–2971. https://doi.org/10.1111/1541-4337.12621
Xu, Z., Hao, N., Li, L., Zhang, Y., Yu, L., Jiang, L., & Sui, X. (2019). Valorization of soy whey wastewater: How epigallocatechin-3-gallate regulates protein precipitation. ACS Sustainable Chemistry & Engineering, 7(18), 15504–15513. https://doi.org/10.1021/acssuschemeng.9b03208
Yao, W., Lei, Z., Fu, S., Zhong, J., & Liu, C. (2019). Effects of addition sequence on structure and function of β-lactoglobulin-EGCG-glucose ternary complexes. Food Science, 40, 41–47. https://doi.org/10.7506/spkx1002-6630-20180814-132.
Yan, S., Regestein, J. M., Qi, B., & Li, Y. (2023). Construction of protein-polysaccharide- and polyphenol-based conjugates as delivery systems. Critical Reviews in Food Science and Nutrition, 65(7), 1–19. https://doi.org/10.1080/10408398.2023.2293253
Yang, X., Yuan, K., Descallar, F. B. A., Li, A., Yang, X., & Yang, H. (2022). Gelation behaviors of some special plant-sourced pectins: A review inspired by examples from traditional gel foods in China. Trends in Food Science & Technology, 126, 26–40. https://doi.org/10.1016/j.tifs.2022.06.012
You, G., Liu, X. L., & Zhao, M. M. (2018). Preparation and characterization of hsian-tsao gum and chitosan complex coacervates. Food Hydrocolloids, 74, 255–266. https://doi.org/10.1016/j.foodhyd.2017.08.004
Zhang, M., Zhang, H., Jia, L., Zhang, Y., Qin, R., Xu, S., & Mei, Y. (2024). Health benefits and mechanisms of theobromine. Journal of Functional Foods, 115, 106126. https://doi.org/10.1016/j.jff.2024.106126
Zhang, Q., Dong, H., Gao, J., Chen, L., & Vasanthan, T. (2020). Field pea protein isolate/chitosan complex coacervates: Formation and characterization. Carbohydrate Polymers, 250, 116925. https://doi.org/10.1016/j.carbpol.2020.116925
Zhang, R., Belwal, T., Li, L., Lin, X., Xu, Y., & Luo, Z. (2020). Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydrate Polymers, 242, 116388. https://doi.org/10.1016/j.carbpol.2020.116388
Zhao, M., Xia, X., Mao, J., Wang, C., Dawadi, M. B., Modarelli, D. A., & Zacharia, N. S. (2019). Composition and property tunable ternary coacervate: Branched polyethylenimine and a binary mixture of a strong and weak polyelectrolyte. Molecular Systems Design & Engineering, 4, 110-121. https://doi.org/10.1039/C8ME00069G