Investigating the anti-diabetic potential of casein through in vitro and computational gene expression analysis: a comparative study with metformin for advancing type 2 diabetes therapy

Main Article Content

Tariq Aziz
Liqing Zhao
Zhennai Yang
Nawal Al-Hoshani
Maher S. Alwethaynani
Reham M. Mashat
Fakhria A. Al-Joufi
Nahed S. Alharthi
Sarah Almaghrabi
Bandar K. Baothman
Ahmad A. Alghamdi
Majid Alhomrani

Keywords

alpha-amylase inhibition, casein hydrolysate, computational analysis, NCOA2, type 2 diabetes

Abstract

Type 2 diabetes mellitus (T2DM) is a growing global health concern, characterized by insulin resistance and dysregulated glucose metabolism. Current treatments, like metformin, while effective, have limitations in terms of side effects and long-term efficacy. Thus, the exploration of alternative therapeutic agents, such as bioactive peptides from natural sources, has gained attention for their potential in managing T2DM. This study explores the antidiabetic, antioxidant, anti-inflammatory, and anti-hemolytic potential of casein hydrolysate peptides derived from high-purity casein sourced from Fonterra Cooperative Group, New Zealand. The peptides were generated and assessed through a series of in vitro and computational approaches, with metformin serving as a standard control for comparison. In vitro assays revealed that casein hydrolysate peptides demonstrated a dose-dependent inhibition of alpha-amylase, with a maximum inhibition of 95.7% at 500 μg/mL, outperforming metformin’s 77.7% inhibition. Computational analysis of the GSE40234 dataset identified the downregulation of the NCOA2 gene in T2DM patients, with a logFC of -0.89 and a raw P-value of 1.85e-08. Docking studies showed a stronger binding affinity of casein hydrolysate peptides (−9.5 KJ/mol) to NCOA2 compared to metformin (−6.5 KJ/mol). Molecular dynamics simulations confirmed the stability of the casein hydrolysate peptide-NCOA2 complex, supporting its potential as an effective therapeutic agent. These findings highlight casein hydrolysate peptides as a promising candidate for managing T2DM, offering a natural alternative to traditional treatments. Future studies should explore in vivo models and clinical trials to validate these results and further assess the therapeutic potential of casein hydrolysate peptides in diabetes management.

Abstract 404 | PDF Downloads 114 XML Downloads 30 HTML Downloads 0

References

Ali, U., Makhdoom, S.I., Javed, M.U. Khan RA, Naveed M, Abbasi BH, Aziz T, Alshehri F, Al-Asmari F, Aljoufi FA and Alwethaynani. (2025). Fenugreek seeds as a natural source of L-arginine-encapsulated lipid nanoparticles against diabetes. Sci Rep 15, 7016. https://doi.org/10.1038/s41598-025-90675-z
ALKaisy, Q. H., Al-Saadi, J. S., Al-Rikabi, A. K. J., Altemimi, A. B., Hesarinejad, M. A., & Abedelmaksoud, T. G. (2023). Exploring the health benefits and functional properties of goat milk proteins. Food Science & Nutrition, 11(10), 5641–5656. https://doi.org/10.1002/fsn3.3531
American Diabetes Association. (2009). Diagnosis and classification of diabetes mellitus. Diabetes Care, 32(Suppl 1), S62–S67. https://doi.org/10.2337/dc09-S062
Antony, P., & Vijayan, R. (2021). Bioactive peptides as potential nutraceuticals for diabetes therapy: A comprehensive review. International Journal of Molecular Sciences, 22(16), 9059. https://doi.org/10.3390/ijms22169059
Arif, R., Ahmad, S., Mustafa, G., Mahrosh, H. S., Ali, M., Tahir Ul Qamar, M., & Dar, H. R. (2021). Molecular docking and simulation studies of antidiabetic agents devised from hypoglycemic polypeptide-P of Momordica charantia. Biomedical Research International, 2021, 5561129. https://doi.org/10.1155/2021/5561129
Aziz T, Hussain N, Hameed Z, Lin L. (2024). Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases: recent challenges and future recommendations. Gut Microbes. 16(1):2297864. https://doi.org/10.1080/19490976.2023.2297864.
Bamdad, F., Shin, S. H., Suh, J. W., Nimalaratne, C., & Sunwoo, H. (2017). Anti-inflammatory and antioxidant properties of casein hydrolysate produced using high hydrostatic pressure combined with proteolytic enzymes. Molecules, 22(4), 609. https://doi.org/10.3390/molecules22040609
Beales, P. E., Elliott, R. B., Flohé, S., Hill, J. P., Kolb, H., Pozzilli, P., Wang, G. S., Wasmuth, H., & Scott, F. W. (2002). A multi-centre blinded international trial of the effect of A(1) and A(2) beta-casein variants on diabetes incidence in two rodent models of spontaneous Type I diabetes. Diabetologia, 45(9), 1240–1246. https://doi.org/10.1007/s00125-002-0898-2
Blahova, J., Martiniakova, M., Babikova, M., Kovacova, V., Mondockova, V., & Omelka, R. (2021). Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals, 14(8), 806. https://doi.org/10.3390/ph14080806
Chang, G., Tian, S., Luo, X., Xiang, Y., Cai, C., Zhu, R., Cai H, Yang, H., Gao, H. (2025). Hypoglycemic Effects and Mechanisms of Polyphenols from Myrica rubra Pomace in Type 2 Diabetes (db/db) Mice. Molecular Nutrition & Food Research, e202400523. doi: 10.1002/mnfr.202400523
Chelliah, R., Wei, S., Daliri, E. B., Elahi, F., Yeon, S. J., Tyagi, A., Liu, S., Madar, I. H., Sultan, G., & Oh, D. H. (2021). The role of bioactive peptides in diabetes and obesity. Foods, 10(9), 2220. https://doi.org/10.3390/foods10092220
Davoodi, S. H., Shahbazi, R., Esmaeili, S., Sohrabvandi, S., Mortazavian, A., Jazayeri, S., & Taslimi, A. (2016). Health-related aspects of milk proteins. Iranian Journal of Pharmaceutical Research, 15(3), 573–591.
Drzewoski, J., & Hanefeld, M. (2021). The current and potential therapeutic use of metformin—the good old drug. Pharmaceuticals (Basel), 14(2), 122. https://doi.org/10.3390/ph14020122
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Sciences, 21(17), 6275. https://doi.org/10.3390/ijms21176275
Goetzman, E. S., Gong, Z., Schiff, M., Wang, Y., & Muzumdar, R. H. (2018). Metabolic pathways at the crossroads of diabetes and inborn errors. Journal of Inherited Metabolic Disease, 41(1), 5–17. https://doi.org/10.1007/s10545-017-0091-x
Goyal, R., Singhal, M., & Jialal, I. (2023). Type 2 diabetes. In StatPearls [Internet]. StatPearls Publishing. https://www.statpearls.com
Gurgle, H. E., White, K., & McAdam-Marx, C. (2016). SGLT2 inhibitors or GLP-1 receptor agonists as second-line therapy in type 2 diabetes: Patient selection and perspectives. Vascular Health and Risk Management, 12, 239–249. https://doi.org/10.2147/VHRM.S83088
Hasan, M. M., Islam, M. E., Hossain, M. S., Akter, M., Rahman, M. A. A., Kazi, M., Khan, S., & Parvin, M. S. (2023). Unveiling the therapeutic potential: Evaluation of anti-inflammatory and antineoplastic activity of Magnolia champaca Linn's stem bark isolate through molecular docking insights. Heliyon, 10(1), e22972. https://doi.org/10.1016/j.heliyon.2023.e22972
Infante, M., Leoni, M., Caprio, M., & Fabbri, A. (2021). Long-term metformin therapy and vitamin B12 deficiency: An association to bear in mind. World Journal of Diabetes, 12(7), 916–931. https://doi.org/10.4239/wjd.v12.i7.916
Ioele, G., Chieffallo, M., Occhiuzzi, M. A., De Luca, M., Garofalo, A., Ragno, G., & Grande, F. (2022). Anticancer drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties. Molecules, 27(17), 5436. https://doi.org/10.3390/molecules27175436
Kanda, A., Nakayama, K., Sanbongi, C., Nagata, M., Ikegami, S., & Itoh, H. (2016). Effects of whey, caseinate, or milk protein ingestion on muscle protein synthesis after exercise. Nutrients, 8(6), 339. https://doi.org/10.3390/nu8060339
Koirala, P., Dahal, M., Rai, S., Dhakal, M., Nirmal, N. P., Maqsood, S., Al-Asmari, F., & Buranasompob, A. (2023). Dairy milk protein-derived bioactive peptides: Avengers against metabolic syndrome. Current Nutrition Reports, 12(2), 308–326. https://doi.org/10.1007/s13668-023-00472-1
Liang J, He Y, Huang C, Ji F, Zhou X, Yin Y. (2024). The Regulation of Selenoproteins in Diabetes: A New Way to Treat Diabetes. Curr Pharm Des. 30(20):1541-1547. https://doi.org/10.2174/0113816128302667240422110226.
Lv, Z., & Guo, Y. (2020). Metformin and its benefits for various diseases. Frontiers in Endocrinology, 11, 191. https://doi.org/10.3389/fendo.2020.00191
Marcone, S., Belton, O., & Fitzgerald, D. J. (2017). Milk-derived bioactive peptides and their health-promoting effects: A potential role in atherosclerosis. British Journal of Clinical Pharmacology, 83(1), 152–162. https://doi.org/10.1111/bcp.13002
Reed, J., Bain, S., & Kanamarlapudi, V. (2021). A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 3567–3602. https://doi.org/10.2147/DMSO.S319895
Venkatachalapathy, P., Padhilahouse, S., Sellappan, M., Subramanian, T., Kurian, S. J., Miraj, S. S., Rao, M., Raut, A. A., Kanwar, R. K., Singh, J., Khadanga, S., Mondithoka, S., & Munisamy, M. (2021). Pharmacogenomics and personalized medicine in type 2 diabetes mellitus: Potential implications for clinical practice. Pharmacogenomics and Personalized Medicine, 14, 1441–1455. https://doi.org/10.2147/PGPM.S329787
Wang, C., Luo, D., Zheng, L., & Zhao, M. (2024). Anti-diabetic mechanism and potential bioactive peptides of casein hydrolysates in STZ/HFD-induced diabetic rats. Journal of the Science of Food and Agriculture, 104(5), 2947–2958. https://doi.org/10.1002/jsfa.13187Wu, Y., Ding, Y., Tanaka, Y., & Zhang, W. (2014). Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. International Journal of Medical Sciences, 11(11), 1185–1200. https://doi.org/10.7150/ijms.10001
Zhao, X., An, X., Yang, C., Sun, W., Ji, H., & Lian, F. (2023). The crucial role and mechanism of insulin resistance in metabolic disease. Frontiers in Endocrinology, 14, 1149239. https://doi.org/10.3389/fendo.2023.1149239