Development, physicochemical quality analysis, and nutritional evaluation of mango and date fruit bars, enriched with quinoa

Main Article Content

Futrus Abid
Muhammad Bilal
Fozia Bakhtawar
Nida Firdous
Muhammad Mueed Tanveer Malik
Ashiq Hussain
Shafiq ur Rahman
Syed Rafiq Hussain Shah
Tariq Aziz
Nawal Al-Hoshani
Fahad Al-Asmari
Fakhria A. Al-Joufi

Keywords

dates, fruit-based bars, functional foods, mango, physicochemical and microbial analysis

Abstract

Food bars made with variety of fruits and pseudocereals offer both nutritional and bioactive contents. This study aimed to develop and evaluate quinoa-based functional fruit bars incorporating mango and dates, at three quinoa flour concentrations (10%, 20%, and 30%). The research employed proximate, mineral, total sugars, reducing and non-reducing sugars, in vitro starch digestibility, calorific value, water holding capacity, brix content, color, microbiological safety, sensory, texture analysis and storage studies over a 45-day period following standard protocols. For quinoa-based fruit bars, protein content ranged from 14.51% (day 0) to 8.88% (day 45) across treatments, while calorific values decreased from 316.41 kcal to 297.90 kcal. Moisture content declined significantly, from 18.253% on day 0 to 14.130% on day 45, leading to an increase in hardness value from 233.77 g to 635.00 g. Sensory analysis revealed that the bar with 20% quinoa flour were considered as the most acceptable, achieving the highest scores for aroma and texture throughout storage. For mango-based fruit bars, protein content ranged from 13.21% (day 0) to 9.42% (day 45), and calorific values varied from 314.78 kcal to 301.43 kcal. Moisture content decreased from 17.52% to 14.28%, resulting in hardness values increasing from 245.50 g to 598.00 g. For both date and mango bars, total sugars (44.30–62.15%), starch digestibility (336.86–455.76%), water-holding capacity (0.6873% to 0.5077%) and brix values (47.35–71.98) varied significantly, while color values declined and microbial counts remained safe over storage. These results demonstrated that quinoa-enriched fruit bars maintain nutritional quality and consumer acceptability over 45 days, making them a promising functional snack.

Abstract 33 | PDF Downloads 12 XML Downloads 1 HTML Downloads 0

References

Agarwal, A., Rizwana, Tripathi, A. D., Kumar, T., Sharma, K. P., & Patel, S. K. S. (2023). Nutritional and functional new perspectives and potential health benefits of quinoa and chia seeds. Antioxidants, 12(7), 1413. https://doi.org/10.3390/antiox12071413.
Aghajanzadeh, S., Ziaiifar, A. M., & Verkerk, R. (2023). Effect of thermal and non-thermal treatments on the color of citrus juice: A review. Food Reviews International, 39(6), 3555-3577. https://doi.org/10.1080/87559129.2021.2012799.
Akesowan, A., Choonhahirun, A., & Jariyawaranugoon, U. (2020). Quality and sensory profile evaluation of gluten-free sapodilla-wild almond seed bar with stevia as partial sugar substitution. Food Research, 4(4), 1109-1115. https://doi.org/10.26656/fr.2017.4(4).421.
Altuncevahir, İ. Ö., Erdoğan, E. Ö., & Yücesoy, S. (2024). Evaluation nutrients of Turkish snack bars based on labeling and web page information: A qualitative research. Journal of Food Quality and Hazards Control. https://doi.org/10.18502/jfqhc.11.2.15648.
Amalia, M. R., Nuryani, N., & Santoso, B. (2022). Sensory Characteristics and Nutrient Content of Food Bar with Flour and Pumpkin Seed Substitution. Jurnal Ilmiah Kesehatan (JIKA), 4(1), 182-192. https://doi.org/10.36590/jika.v4i1.271.
Amini, K., Sharifan, A., Ghiassi Tarzi, B., & Azizinezhad, R. (2022). Preparation of a low‐calorie, gluten‐free all‐in‐one cake mix, containing Bacillus Coagulans using quinoa and inulin functionality. Journal of Food Quality, 2022 (1), 8550086. https://doi.org/10.1155/2022/8550086.
Angeli, V., Miguel Silva, P., Crispim Massuela, D., Khan, M. W., Hamar, A., Khajehei, F., & Piatti, C. (2020). Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods, 9(2), 216. https://doi.org/10.3390/foods9020216.
AOAC. (2000). Official methods of analysis (17th ed.). Association of Official Analytical Chemists.
Arinzechukwu, C.S., & Nkama, I. (2019). Production and quality evaluation of fruit bars from banana (Musa sapientum) and cashew (Anacardiumouest) apple fruit blends. Asian Food Science Journal, 10 (2), 1-16. https://doi.org/10.9734/AFSJ/2019/V10I230032.
Aslam, H., Nadeem, M., Shahid, U., Ranjha, MMAN, Khalid, W., Qureshi, TM, & Awuchi, CG (2023). Physicochemical characteristics, antioxidant potential, and shelf stability of developed roselle–fig fruit bar. Food Science & Nutrition, 11 (7), 4219-4232. https://doi.org/10.1002/fsn3.3436.
Aziz T, Qadir R, Anwar F, Naz S, Nazir N, Nabi G, Haiying C, Lin L, Alharbi M, Alasmari AF. (2024). Optimal Enzyme-Assisted Extraction of Phenolics from Leaves of Pongamia pinnata via Response Surface Methodology and Artificial Neural Networking. Appl Biochem Biotechnol. 196(9):6508-6525. https://doi.org/10.1007/s12010-024-04875-w.
Barakat, H., & Alfheeaid, H. A. (2023). Date palm fruit (Phoenix dactylifera) and its promising potential in developing functional energy bars: Review of chemical, nutritional, functional, and sensory attributes. Nutrients, 15(9), 2134. https://doi.org/10.3390/nu15092134.
Campos-Rodriguez, J., Acosta-Coral, K., & Paucar-Menacho, L. M. (2022). Quinua (Chenopodium quinoa): Composición nutricional y Componentes bioactivos del grano y la hoja, e impacto del tratamiento térmico y de la germinación. Scientia Agropecuaria, 13(3), 209-220. https://doi.org/10.17268/sci.agropecu.2022.019.
Canela-Xandri, A., Balcells, M., Villorbina, G., Cubero, M. Á., & Canela-Garayoa, R. (2018).Effect of enzymatic treatments on dietary fruit fibre properties. Biocatalysis and Biotransformation, 2018, vol. 36.0, núm. 2, p. 172.0-179.0. https://doi.org/10.1080/10242422.2017.1313836.
Carrizo, S. L., de LeBlanc, A. D. M., LeBlanc, J. G., & Rollán, G. C. (2020). Quinoa pasta fermented with lactic acid bacteria prevents nutritional deficiencies in mice. Food Research International, 127, 108735. https://doi.org/10.1016/j.foodres.2019.108735.
Chau, C. F., & Cheung, P. K. (1997). Effect of various processing methods on antinutrients and in vitro digestibility of protein and starch of two Chinese indigenous vegetable seeds. Journal of Agricultural and Food Chemistry, 45 (12), 4773-4776. https://doi.org/10.1021/jf970504p.
Christen, J.A., & Parker, A.E. (2020). Systematic statistical analysis of microbial data from dilution series. Journal of Agricultural, Biological and Environmental Statistics, 25 (3), 339-364. https://doi.org/10.1007/s13253-020-00397-0.
Czech, A., Zarycka, E., Yanovych, D., Zasadna, Z., Grzegorczyk, I., & Kłys, S. (2020). Mineral content of the pulp and peel of various citrus fruit cultivars. Biological Trace Element Research, 193, 555-563. http://doi.org/10.1007/s12011-019-01727-1.
Dakhili, S., Abdolalizadeh, L., Hosseini, S. M., Shojaee-Aliabadi, S., & Mirmoghtadaie, L. (2019). Quinoa protein: Composition, structure and functional properties. Food Chemistry, 299, 125161. https://doi.org/10.1016/j.foodchem.2019.125161.
Dev, R., & Gupta, M. (2024). Elucidating the physical, chemical, functional and antioxidant properties of protein-rich quinoa (Chenopodium quinoa) crisp. Food and Humanity, 2, 100205. https://doi.org/10.1016/j.foohum.2023.100205
Devi, M., Vyas, S. R., & Kaur, J. (2018). Preparation and quality assessment of apple bar from different varieties. Asian Journal of Dairy and Food Research, 37(3), 242-245. https://doi.org/10.18805/AJDFR.DR-1354.
Din, G. M. U., Rubab, Q., Hussain, A., Yaqub, S., Zulfiqar, N., Bibi, B., ... & Elkhedir, A. E. (2024). Effect of lotus (Nelumbo Nucifera, G.) rhizome powder as a fat replacer on the quality attributes of muffins. Discover Food, 4(1), 158. https://link.springer.com/article/10.1007/s44187-024-00225-1
Eyiz, V., Tontul, İ., & Türker, S. (2020). The effect of edible coatings on physical and chemical characteristics of fruit bars. Journal of Food Measurement and Characterization, 14, 1775-1783. https://doi.org/10.1007/s11694-020-00425-0.
Gahane, S., Relekar, P., Kadam, J., Shirke, G., Ranveer, R., & Rane, S. (2024). Development of sweet potato (Ipomoea batatas L.) and mango (Mangifera indica L.) blended bar. International Journal of Advanced Biochemistry Research, 8(3): 551-557. https://doi.org/10.33545/26174693.2024.v8.i3g.773.
Garre, A., Egea, JA, Esnoz, A., Palop, A., & Fernandez, PS (2019). Tail or artifact? Illustration of the impact that uncertainty of the serial dilution and cell enumeration methods has on microbial inactivation. Food Research International, 119, 76-83. https://doi.org/10.1016/j.foodres.2019.01.059.
Gireesh, A., Mishra, S., Vishen, G. S., Gopan GM, V., & Jose, P. (2022). Studies on Preparation and Value Addition on Guava Fruit Bar. International Journal of Plant & Soil Science, 34(22), 610-616. https://doi.org/10.9734/ijpss/2022/v34i2231414.
Gómez, M. J. R., Prieto, J. M., Sobrado, V. C., & Magro, P. C. (2021). Nutritional characterization of six quinoa (Chenopodium quinoa Willd) varieties cultivated in Southern Europe. Journal of Food Composition and Analysis, 99, 103876. https://doi.org/10.1016/j.jfca.2021.103876.
Gorsi, F. I., Hussain, A., Kausar, T., Nisar, R., Siddique, T., Yaqub, S., ... & Akram, S. (2024). Structural and thermal interaction studies of aloe vera (aloe barbadensis miller) gel powder and developed food bars. Journal of Thermal Analysis and Calorimetry, 149(10), 4543-4559. https://link.springer.com/article/10.1007/s10973-024-13007-9
Hernández-Ledesma, B. (2019). Quinoa (Chenopodium quinoa Willd.) as source of bioactive compounds: A review. Bioactive Compounds in Health and Disease-Online ISSN: 2574-0334; Print ISSN: 2769-2426, 2(3), 27-47. https://doi.org/10.31989/bchd.v2i3.556.
Hernández-Maldonado, LM, Blancas-Benítez, FJ, Zamora-Gasga, VM, Cárdenas-Castro, AP, Tovar, J., & Sáyago-Ayerdi, SG (2019). In vitro gastrointestinal digestion and colonic fermentation of high dietary fiber and antioxidant-rich mango (Mangifera indica L.) “Ataulfo”-based fruit bars. Nutrients, 11 (7), 1564. https://doi.org/10.3390/nu11071564.
Hossain, A.B.M. Sharif. (2019). Glucose, TSS and nutrient content of dates, mango, apple and banana: A comparative study. International Journal of Bioscience and Biochemistry. 1. 18-20. https://doi.org/10.33545/26646536.2019.v1.i1a.6.
Hussain, A., Kausar, T., & Din, A. (2023). Development, standardization, physico-chemical and nutritional analysis of biscuits developed with different replacement levels of pumpkin flesh powder. J. Agric. Res, 61(1), 220.
Hussain, A., Kausar, T., Siddique, T., Kabir, K., An, Q. U., Rukhsar, F., ... Mahdi, A. A. (2024a). Physiological and biochemical variations of naturally ripened mango (Mangifera Indica L.) with synthetic calcium carbide and ethylene. Scientific Reports, 14(1), 2121. https://www.nature.com/articles/s41598-024-52483-9
Hussain, A., Rehman, A., Kauser, S., Ali, A., Arif, M. R., Fatima, H., ... Korma, S. A. (2024b). Evaluation of peel, flesh, and kernel of mango (Mangifera indica L.) for phytochemicals and application as functional ingredients in bakery formulation. Nutrire, 49(2), 45. https://link.springer.com/article/10.1186/s41110-024-00288-1
Hussain, M. I., Farooq, M., Syed, Q. A., Ishaq, A., Al-Ghamdi, A. A., & Hatamleh, A. A. (2021). Botany, nutritional value, phytochemical composition and biological activities of quinoa. Plants, 10(11), 2258. https://doi.org/10.3390/plants10112258.
Jufri, N., Marliyati, SA, Anwar, F., & Ekayanti, I. (2023). Date milk enriched with vitamin D: nutrient content and acceptability as a food additive for preschoolers 48-59 months. Bio Rxiv, 2023-05. https://doi.org/10.1101/2023.05.15.540750.
Kamau, J., Mwaura, F., Mwaniki, J., & Mbui, D. (2020). Proximate analysis of fruits and vegetables wastes from Nairobi County, Kenya. Research Journal of Food Science and Nutrition, 5(1), 9-15. http://doi.org/10.31248/RJFSN2019.088.
Kaur, R., Ahluwalia, P., Sachdev, P. A., & Kaur, A. (2018). Development of gluten-free cereal bar for gluten intolerant population by using quinoa as major ingredient. Journal of Food Science and Technology, 55, 3584-3591. https://link.springer.com/article/10.1007/s13197-018-3284-x
Kigozi, J., Wandeka, C. M., Mugabi, R., & Ainebyona, P. (2024). Optimization of hardness as a textural property of a fruit enriched honey sweetened snack bar for children aged 5 to 13 Years. European Journal of Agriculture and Food Sciences, 6(4), 14-18. https://doi.org/10.24018/ejfood.2024.6.4.733.
Li, G., & Zhu, F. (2018). Quinoa starch: Structure, properties, and applications. Carbohydrate Polymers, 181, 851-861. https://doi.org/10.1016/j.carbpol.2017.11.067.
Li, T., Liang, M., Li, Z., Gu, F., Guo, Q, Wang, Q. (2025). Synthesis of novel resveratrol nervonic acid ester using a solvent-free mechanochemical method: Improved lipophilicity, thermostability, and oxidation stability. Food Chemistry, 480, 143958. doi: https://doi.org/10.1016/j.foodchem.2025.143958
Mahnoor, Ainee, A., Hussain, A., Kausar, T., Bibi, B., Kabir, K., ... & Korma, S. A. (2024). Effect of water chestnut based edible coating on the physicochemical quality and shelf life of apples. Discover Applied Sciences, 6(8), 442. https://link.springer.com/article/10.1007/s42452-024-06114-7
Maldonado-Celis, M. E., Yahia, E. M., Bedoya, R., Landázuri, P., Loango, N., Aguillón, J., & Guerrero Ospina, J. C. (2019). Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Frontiers in Plant Science, 10, 1073. https://doi.org/10.3389/fpls.2019.01073.
Manasa, B., Jagadeesh, S. L., & Thammaiah, N. (2019). Colour measurement of ripening mango fruits as influenced by pre-harvest treatments using L* a* b* coordinates. Journal of Pharmacognosy and Phytochemistry, 8(1), 2466-2470.
Melini, V., & Melini, F. (2021). Functional components and anti-nutritional factors in gluten-free grains: A focus on quinoa seeds. Foods, 10(2), 351. https://doi.org/10.3390/foods10020351.
Munir, M., Nadeem, M., Qureshi, T.M., Qayyum, A., Suhaib, M., Zeb, F., & Ashokkumar, M. (2018). Addition of oat enhanced the physico-chemical, nutritional and sensory qualities of date fruit based snack bars. Journal of Food and Nutrition Research, 6 (4), 271-276. https://doi.org/10.12691/jfnr-6-4-10.
Olabinjo, O. O., Sama, M. O., & Babatope, O. S. (2022). Evaluation of nutritional composition of ripe date fruit (Phoenix Dactylifera L.) pulp and seed grown in Nigeria. International Journal of Environment Agriculture and Biotechnology, 7, 123-28. https://doi.org/10.22161/ijeab.75.12.
Ozilgen, S. (2011). Influence of chemical composition and environmental conditions on the textural properties of dried fruit bars. Czech Journal of Food Sciences, 29(5), 539-547. https://doi.org/10.17221/303/2009-CJFS.
Padmashree, A., Negi, N., Haridas, S., Govindaraj, T., Kumar, K. R. A., Semwal, A. D., & Sharma, G. K. (2018). Development and quality evaluation of choco quinoa nutri bar during storage. Food and Nutrition Sciences, 9(7), 899-914. https://doi.org/10.4236/fns.2018.97067.
Pathan, S., & Siddiqui, R. A. (2022). Nutritional composition and bioactive components in quinoa (Chenopodium quinoa Willd.) greens: A review. Nutrients, 14(3), 558. https://doi.org/10.3390/nu14030558.
Pellegrini, M., Lucas-Gonzales, R., Ricci, A., Fontecha, J., Fernández-López, J., Pérez-Álvarez, J. A., & Viuda-Martos, M. (2018). Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Industrial Crops and Products, 111, 38-46. https://doi.org/10.1016/j.indcrop.2017.10.006.
Pertiwi, N. N., Putra, E. D. L., & Harun, F. R. (2022). Determination of macro mineral content in fresh Noni Fruit (Morinda Citrifolia L.) by atomic absorption spectrophotometry. International Journal of Science, Technology & Management, 3(5), 1392-1395. http://doi.org/10.46729/ijstm.v3i5.612.
Rasouli, M., Saba, M. K., & Ramezanian, A. (2019). Inhibitory effect of salicylic acid and Aloe vera gel edible coating on microbial load and chilling injury of orange fruit. Scientia Horticulturae, 247, 27-34. https://doi.org/10.1016/J.SCIENTA.2018.12.004.
Romano, N., Ureta, M. M., Guerrero-Sánchez, M., & Gómez-Zavaglia, A. (2020). Nutritional and technological properties of a quinoa (Chenopodium quinoa Willd.) spray-dried powdered extract. Food Research International, 129, 108884. https://doi.org/10.1016/j.foodres.2019.108884.
Sabeel V, A., Wani, K. M., Dubey, P. K., Reddy, M. V. K., & Kumar, S. (2024). Pseudocereals and dates as potential ingredients in nutrition bars: a review. Nutrire, 49(2), 38. https://link.springer.com/article/10.1186/s41110-024-00281-8
Sahu, A., Kishore, K., Nayak, R. K., Dash, S. N., Sahoo, S. C., & Barik, S. (2023). Influence of potassium on mineral content, yield and quality attributes of dragon fruit (Selenicereus monacanthus) in acidic soil of Eastern tropical region of India. Journal of Plant Nutrition, 46(11), 2621-2636. http://doi.org/10.1080/01904167.2022.2160744.
Saletnik, B., Bajcar, M., Saletnik, A., Zaguła, G., & Puchalski, C. (2021). Effect of the pyrolysis process applied to waste branches biomass from fruit trees on the calorific value of the biochar and dust explosivity. Energies, 14(16), 4898. https://doi.org/10.3390/en14164898.
Salomón-Torres, R., Ortiz-Uribe, N., Valdez-Salas, B., Rosas-González, N., García-González, C., Chávez, D., & Krueger, R. (2019). Nutritional assessment, phytochemical composition and antioxidant analysis of the pulp and seed of medjool date grown in Mexico. PeerJ, 7, e6821. https://doi.org/10.7717/peerj.6821.
Shaikh, R. N., Agarkar, B. S., Kshirsagar, R. B., & Bachate, A. H. (2021). Studies on physical, chemical and mineral evaluation of mango (Mangifera indica L.). The Pharma Innovation Journal, 10(6), 446-449.
Shouket, S., khurshid, S., Khan, J. Nadeem AA, Sarwar A, Aziz T, Alotaibi NM, Alamari AS, Alhomrani M, Sameeh MY. (2024) Biosynthetically produced glucose oxidase immobilized silver nanoparticle bioconjugate treatment improves the shelf life of mango fruit: an innovative method towards food safety and sustainability. Biomass Conv. Bioref. 14, 31357–31368 . https://doi.org/10.1007/s13399-023- 04753-1

Siddique, F., Hussain, A., Mahdi, A. A., Hassan, M., Noreen, S., Siddique, T., ... & Korma, S. A. (2024). Comparison of Chemically Treated, Pasteurized, and Microwave‐Treated (at Different Time Durations) Chia Seeds Added To Mango‐Whey Beverage, during Different Storage Periods, for Physicochemical and Sensory Parameters. Journal of Food Quality, 2024(1), 6688945. https://doi.org/10.1155/2024/6688945
Srivastava, A., Kohli, D., Vishnoi, S., Kumar, S., & Badola, R. (2019). Quality evaluation of prepared guava-orange fruit bar. International Journal of Chemical Studies, 7(4), 1574-1581.
Tagud, J. M. J., Baclayon, M. B., & Agoylo Jr, J. C. (2024). Evaluation of the Organoleptic Properties of Calabash Fruit (Crescentia Cujete) Jam: A Comprehensive Sensory analysis. International Journal of Latest Technology in Engineering, Management & Applied Science, 13(8), 13-23. https://doi.org/10.51583/ijltemas.2024.130802.
Tsegay, Z. T. (2020). Total titratable acidity and organic acids of wines produced from cactus pear (Opuntia‐ficus‐indica) fruit and Lantana camara (L. Camara) fruit blended fermentation process employed response surface optimization. Food science & nutrition, 8(8), 4449-4462. https://doi.org/10.1002/fsn3.1745.
Ud Din, G. M., Usmani, W., Hussain, A., Bilal, M., Najam, A., Zia, M., Siddique Raza, M., Aziz, T., Zahra, N., Alshammari, J. M., Alharbi, M. H., & Al-Asmari, F. (2025). Effect of multigrain flour mixes on the physicochemical, nutritional, textural, and sensory quality of cake rusks. Italian Journal of Food Science, 37(2), 261-275. https://doi.org/10.15586/ijfs.v37i2.2921
Umar, Y., Hashim, H., & Muhammad, Z. U. (2021). Proximate and quantitative phytochemical analysis of Detarium microcarpum fruit pulp. Journal of Biology, Agriculture and Healthcare, 11(16), 16-22. http://doi.org/10.7176/jbah/11-16-04.
Väkeväinen, K., Ludena-Urquizo, F., Korkala, E., Lapveteläinen, A., Peräniemi, S., von Wright, A., & Plumed-Ferrer, C. (2020). Potential of quinoa in the development of fermented spoonable vegan products. Lwt, 120, 108912. https://doi.org/10.1016/j.lwt.2019.108912.
Verma, R., & Bisen, B. P. (2020). Studies on sensory evaluation of guava and papaya mixed fruit bar during storage. Journal of Pharmacognosy and Phytochemistry, 9(4), 1052-1056.
Villacrés, E., Quelal, M., Galarza, S., Iza, D., & Silva, E. (2022). Nutritional value and bioactive compounds of leaves and grains from quinoa (Chenopodium quinoa Willd.). Plants, 11(2), 213. https://doi.org/10.3390/plants11020213.
Wang, S., Fang, Y., Xu, Y., Zhu, B., Piao, J., Zhu, L, Wu, J. (2022). The effects of different extraction methods on physicochemical, functional and physiological properties of soluble and insoluble dietary fiber from Rubus chingiiHu. fruits. Journal of Functional Foods, 93, 105081. doi: https://doi.org/10.1016/j.jff.2022.105081
Yan, Y., Feng, L., Shi, M., Cui, C., & Liu, Y. (2020). Effect of plasma-activated water on the structure and in vitro digestibility of waxy and normal maize starches during heat-moisture treatment. Food chemistry, 306, 125589. https://doi.org/10.1016/j.foodchem.2019.125589.
Yulistiani, R., & Sarofa, U. (2022). Utilization of fruit extract as acidulant on physicochemical and sensory properties of cottage cheese with addition calcium chloride. AJARCDE (Asian Journal of Applied Research for Community Development and Empowerment), 6(2), 15-21. https://doi.org/10.29165/ajarcde.v6i2.95.
Zhang, Q., Li, H., Zheng, R., Cao, L., Zhang, S., Zhang, S., Fu, L. (2024). Comprehensive analysis of advanced glycation end-products in commonly consumed foods: presenting a database for dietary AGEs and associated exposure assessment. Food Science and Human Wellness, 13(4), 1917-1928. doi: https://doi.org/10.26599/FSHW.2022.9250159
Zhang, Y., Zhang, Y., Li, B., Wang, X., Xu, F., Zhu, K., ... & Li, S. (2019). In vitro hydrolysis and estimated glycemic index of jackfruit seed starch prepared by improved extrusion cooking technology. International Journal of Biological Macromolecules, 121, 1109-1117. https://doi.org/10.1016/j.ijbiomac.2018.10.075.
Zhou, S., Hong, Y., Gu, Z., Cheng, L., Li, Z., & Li, C. (2020). Effect of heat-moisture treatment on the in vitro digestibility and physicochemical properties of starch-hydrocolloid complexes. Food Hydrocolloids, 104, 105736. https://doi.org/10.1016/j.foodhyd.2020.105736.