Effects of chemically modified acorn starch on its functional characteristics and the sustained release properties of monolithic tablets
Main Article Content
Keywords
Abstract
This study investigated the various chemical modifications that affect the functional properties of Acorn starch. Acorn starch was modified using octenyl succinic anhydride, sodium trimetaphosphate (STMP), oxidation, and lactic acid at different concentrations, with their impacts assessed at various temperatures. Octenyl succinic anhydride–treated samples exhibited swelling power ranging from 2.9% at 60°C to 10.4% at 90°C. Modification levels significantly decreased swelling power (P < 0.05), due to structural changes in amylose and amylopectin and stabilization of starch granules from cross-linking. Pasting viscosities increased with modification levels; for example, peak viscosity rose from 1736.0 to 2033.0 cP with octenyl succinic anhydride modification from 3.0 to 9.0%. Lactic acid modification resulted in the highest peak viscosities, whereas STMP cross-linkage showed the lowest. The highest water-holding capacity (WHC) of 139.8% was found with octenyl succinic anhydride at 45°C, while STMP at 0.5% had the lowest WHC. Syneresis varied from 6.80 to 25.30% across freeze–thaw cycles, being lowest with oxidation and highest with STMP. Chemical modifications generally reduced dissolution rates, with lactic acid-modified starch showing the lowest dissolution (58.7%) after 24 h. Results indicated that chemical modifications significantly impact the properties of Acorn starch, emphasizing the need for careful selection based on application.
References
2. Al-Jassim, R. A. M., Ereifej K, I., Shibli, R. A. and Abudabos, A. 1998. Utilization of concentrate diets containing Acorns (Quercus aegilops and Quercus coccifera) and urea by growing Awassi lambs. Small Ruminant Research, 29(3): 289–293.
3. Ozcan, T., and Gulriz, B. 2005. Some Elemental Concentrations in the Acorns of Turkish Quercus L. (Fagaceae) Taxa. Pak. J. Bot Pakistan Journal of Botany. 37: 361-371.
4. Saffarzadeh, A., Vincze, L., and Csapo, J. 1999. Determination of the chemical composition of Acorn (Quercus branti), pistacia atlantica and pistacia khinjuk seeds as non-conventional feedstuffs. Acta Agraria Kaposvariensis. 3(3): 59-69.
5. Oracz, J., Prejzner, M., Grzelczyk, J., Kowalska, G. and Żyżelewicz, D. 2023. Bioactive Compounds, Antioxidant Activity and Sensory Properties of Northern Red Oak (Quercus rubra L., syn. Q. borealis F. Michx) Seeds Affected by Roasting Conditions. Molecules. 28(5): 2299.
6. Rakic, S., Povrenovic, D., Tesevic, V., Simic, M., and Maletic, R. 2006. Oak acorn, polyphenols and antioxidant activity in functional food. J. Food Eng. 74: 416-423.
7. Wang Z., Mhaske P., Farahnaky A., Kasapis S. and Majzoob M. 2022. Cassava starch: Chemical modification and its impact on functional properties and digestibility, a review. Food Hydrocolloids. 129: 107542 . https://doi.org/10.1016/j.foodhyd.2022.107542.
8. Mhaske, P., Majzoobi, M. and Farahnaky, A. 2023. Starch, Modified Starch, and Extruded Foods. In: Food Texturology: Measurement and Perception of Food Textural Properties. 393-420. https://doi.org/10.1007/978-3-031-41900-319
9. Konował, E., Sulej-Chojnacka, J. and Prochaska, K. 2024. 1. New Derivatives of Modified Starch for Food Technology. Molecules, https://doi:10.3390/molecules29143292
10. Garcia A. V. T., Garcia C. F. and Faraco A. A. G. 2020. Pharmaceutical and biomedical applications of native and modified starch: a review. Starch, https://doi.org/10.1002/star.201900270
11. Ashogbon A. O.2021. Dual modification of various starches: Synthesis, properties and applications. Food Chemistry, 342, 128325, https://doi.org/10.1016/j.foodchem.2020.128325.
12. Hadi., N., A., Marefati. A., Purhagen., J. and Rayner, M. 2024. Physicochemical and functional properties of short-chain fatty acid starch modified with different acyl groups and levels of modification. International Journal of Biological Macromolecules, https://doi:10.1016/j.ijbiomac.2024.131523
13. Iqbal, U., Saini, P. and Mazia, A. 2024. Effect of pyro-dextrinization, acid hydrolysis and cross linking modifications on physico-chemical, functional and structural properties of starch from Elephant Foot Yam (Amorphophallus paeoniifolius). doi: 10.21203/rs.3.rs-4003594/v1
14. Bangar S. P., Ashogbon A. O., Singh A., Chaudhary V. and Whiteside W. S. 2022. Enzymatic modification of starch: A green approach for starch applications, Carbohydrate Polymers, 287, 119265, https://doi.org/10.1016/j.carbpol.2022.119265
15. Bharati, K. N. S. 2023. Comprehensive review on single and dual modification of starch: Methods, properties and applications, International Journal of Biological Macromolecules, 253, 3, 126952, https://doi.org/10.1016/j.ijbiomac.2023.126952.
16. Bisht, V. 2018. Physiochemical and functional properties of modified sweet potato starch. International Journal of Chemical Studies, 6(2): 3484-3487
17. Subroto, E., Indiarto, R., Djali, M. and Rosyida, H. D. 2021. Production and application of crosslinking- Modified starch as fat replacer: A review. SSRG International Journal of Engineering Trends and Technology, 68(12), 26–30.
18. Meifang, C., Yunyun, L. and Qunyu, G. 2019. Preparation and physicochemical characteristics of cross-linked resistant starch under heat-moisture treatment. African Journal of Biotechnology, 18(28), 744–753.
19. Heo, H., Lee, Y. and Chang, Y. H. 2017. Rheological, pasting , and structural properties of potato starch by cross-linking. International Journal of Food Properties, 20(2), 2138–2150.
20. Quan, Y., Kweon, M. R. and Sosulski, F. W. 1997. Effect of cross linking on functional properties of cationic corn starch. Starch/Staerke, 49(11), 458–464.
21. Zheng, G. H. Han, H. L. and Bhatty, R. S. 1999. Functional Properties of Cross-Linked and Hydroxypropylated Waxy Hull- Less Barley Starches. Cereal Chemistry, 76(2), 182-188.
22. Lawal, M. V. Odeniyi, M. A. and Itiola, O. A. 2015. Material and Rheological Properties of Native, Acetylated, And Pregelatinized Forms of Corn, Cassava, and Sweet Potato Starches. Starch - Stärke, 67(11-12), 964-975.
23. Dias, A. R. G. Zavareze, E. D. R. Helbig, E. Moura, F. A. D. Vargas, C. G. and Ciacco, C. F. 2011, Oxidation of Fermented Cassava Starch Using Hydrogen Peroxide. Carbohydrate Polymers, 86(1), 185-191.
24. Tavares, A. C. K. Zanatta, E. Da Rosa Zavareze, E. Helbig, E. and Dias, A. R. G. 2010. The Effects of Acid and Oxidative Modification on the Expansion Properties of Rice Flours with Varying Levels of Amylose. LWT - Food Science and Technology, 43(8), 1213-1219.
25. Saleh, Mohammed, Al-Ismail, K. and Ajo, R. 2016. Pasta quality as impacted by the type of flour and starch and the level of egg addition. Journal of Texture Studies, 48(5), 370–381.
26. AACC International. 2010. Approved methods of analysis (11th Ed). AACCI method 76-21.01. General pasting method for wheat or rye flour or starch using the rapid visco analyser. St Paul, MN, U.S.A: AACC International.
27. Saleh, Mohammed, Lee, Y. and Obeidat, H. (2018). Effects of incorporating nonmodified sweet potato (Ipomoea batatas) flour on wheat pasta functional characteristics. Journal of Texture Studies, 49(5), 512–519.
28. Marta, H. and Tensiska, T. 2017. Functional and Amylographic Properties of Physically-Modified Sweet Potato Starch. KnE Life Sciences, 10.18502/kls.v2i6.1091, 680-700.
29. Chen, B. Dang, L. Zhang, X. Fang, W. Hou, M. Liu, T. and Wang, Z. 2017, Physicochemical Properties And Micro-Structural Characteristics In Starch from Kudzu Root as Affected By Cross-Linking. Food Chemistry, 219, 93-101.
30. Marta, H. and Tensiska, T. 2017. Functional and Amylographic Properties of Physically-Modified Sweet Potato Starch. KnE Life Sciences, 10.18502/kls.v2i6.1091, 680-700.
31. Kim, B.-Y. and Yoo, B. 2010. Effects of Cross-Linking on the Rheological and Thermal Properties of Sweet Potato Starch. Starch-Stärke, 62, 577-583.
32. Hazarika, B. J. and Sit, N. 2016. Effect of Dual Modification with Hydroxypropylation and Cross-linking on Physicochemical Properties of Taro Starch. Carbohydrate Polymers, 140, 269-278.
33. Carmona-Garcia, R. Sanchez-Rivera, M. M. Méndez-Montealvo, G. Garza-Montoya, B. and Bello-Pérez, L. A. 2009, Effect of the Cross-Linked Reagent Type on Some Morphological, Physicochemical and Functional Characteristics of Banana Starch (Musa Paradisiaca). Carbohydrate Polymers, 76(1), 117-122.
34. Sudheesh, C. Sunooj, K. V. Alom, M. Kumar, S. Sajeevkumar, V. A. and George, J. 2020. Effect of Dual Modification with Annealing, Heat Moisture Treatment and Cross-Linking on The Physico-Chemical, Rheological and In Vitro Digestibility of Underutilised Kithul (Caryota Urens) Starch. Journal of Food Measurement and Characterization, 14(3), 1557-1567.
35. Waterschoot, J., Gomand, S.V. and Delcour, J.A., 2016. Impact of swelling power and granule size on pasting of blends of potato, waxy rice and maize starches, Food Hydrocolloids, 52: 69-77.
36. Chibuzo, I. M. 2012, Physicochemical and Retrogradation Characteristics of Modified Sweet Potato (Ipomoea Batatas L.(Lam)) Starch. Journal of Agriculture and Food Technology, 2(3), 49-55.
37. Chen, H. Hu, Z. Liu, D. Li, C. and Liu, S. 2019, Composition and Physicochemical Properties of Three Chinese Yam (Dioscorea opposita Thunb.) Starches: A Comparison Study. Molecules, 24(16).
38. Fonseca, L.M., El Halal, S.L.M., Dias, A.R.G. and Zavareze, E.D.R. 2021. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review, Carbohydrate Polymers, 274: 118665.
39. Vanier, N. L. Da Rosa Zavareze, E. Pinto, V. Z. Klein, B. Botelho, F. T. Dias, A. R. G. and Elias, M. C. 2012. Physicochemical, Crystallinity, Pasting and Morphological Properties of Bean Starch Oxidised by Different Concentrations of Sodium Hypochlorite. Food Chemistry, 131(4), 1255-1262.
40. Yusnita, H. Revathi, S. Nor, H. I. and Suhana, M. H. 2019. Effects of Cross Linking on Breadfruit Starch and Its Batter Properties. Asian Journal of Agriculture and Biology, 7(2), 234-243.
41. Mirmoghtadaie, L. Kadivar, M. and Shahedi, M. 2009. Effects of Cross-Linking and Acetylation on Oat Starch Properties. Food Chemistry, 116(3), 709-713.
42. Vanier, N. L., El Halal, S. L. M., Dias, A. R. G. and Da Rosa, Z. E. 2017. Molecular Structure, Functionality and Applications of Oxidized Starches: A Review. Food Chemistry, 221, 1546-1559.
43. Ding, Y., Shen, M., Wei, D., Xu, L., Sui, T., Cao, C. and Zhou, Y. 2020. Study on Compatible Characteristics of Wheat and Purple Sweet Potato Starches. Food Hydrocolloids, 107.
44. Majzoobi, M., Kaveh, Z. and Farahnaky, A. 2016. Effect of Acetic Acid on Physical Properties of Pregelatinized Wheat and Corn Starch Gels. Food Chemistry, 196, 720-725.
45. Singh, H., Lin, J. H., Huang, W. H. and Chang, Y. H. 2012. Influence of Amylopectin Structure on Rheological and Retrogradation Properties of Waxy Rice Starches. Journal of Cereal Science, 56 (2), 367-373.
46. Zhao, J., Chen, Z., Jin, Z., Buwalda, P., Gruppen, H. and Schols, H. A. 2015. Effects of Granule Size of Cross-Linked and Hydroxypropylated Sweet Potato Starches on Their Physicochemical Properties. Journal of Agricultural and Food Chemistry, 63, 4646-4654.
47. Liu, J., Wang, B., Lin, L., Zhang, J., Liu, W., Xie, J. and Ding, Y. 2014., Functional, Physicochemical Properties and Structure of Cross-Linked Oxidized Maize Starch. Food Hydrocolloids, 36, 45-52.
48. Shang, L., Wu, C., Wang, S., Wei, X., Li, B. and Li, J. 2021. The Influence of Amylose and Amylopectin on Water Retention Capacity and Texture Properties of Frozen-Thawed Konjac Glucomannan Gel. Food Hydrocolloids, 113.
49. Matsuguma, L. S., Lacerda, L. G., Schnitzler, E., Carvalho Filho, M. A. D. S., Franco, C. M. L. and Demiate. 2009. Characterization of Native and Oxidized Starches of Two Varieties of Peruvian Carrot (Arracacia xanthorrhiza, B.) from Two Production Areas of Paraná State, Brazil. Brazilian Archives of Biology and Technology, 53(3), 701-713.
50. Algorri, M., Abernathy, M. J., Cauchon, N. S., Twinkle R. C., Lamm, C. F., Moore, C. M. V. 2022. Re-Envisioning Pharmaceutical Manufacturing: Increasing Agility for Global Patient Access. Journal of Pharmaceutical Sciences. 111 (3): 593-607. https://doi.org/10.1016/j.xphs.2021.08.032.
51. Castro, L. M. G., Caço, A. I., Pereira, C. F., Sousa, S. C., Brassesco, M.,E., Machado, M., Ramos, Ó. L., Alexandre, E.,M.,C., Saraiva, J.,A., Pintado, M. 2023. Modification of Acorn Starch Structure and Properties by High Hydrostatic Pressure. Gels 9, 757. https://doi.org/10.3390/gels9090757
52. Leganes, J., Rodríguez, A.M., Arranz, M.A., Castillo-Sarmiento, C.A., Ballesteros-Yáñez, I., Migallón, A.S., Merino, S. and Vázquez, E. 2022. Magnetically responsive hydrophobic pockets for on–off drug release, Materials Today Chemistry, 23, 100702, https://doi.org/10.1016/j.mtchem.2021.100702.