Production of biogenic amines by Enterococcus strains from green and black table olives in Türkiye

Main Article Content

Pinar Şanlibaba
Gülsüm Atasoy
Nilüfer Vural
Rahmi Ertan Anli

Keywords

biogenic amine; food safety; Enterococcus spp., table olive

Abstract

Table olives are among the most significant traditional fermented vegetables in Türkiye, with their global consumption steadily increasing. This study aimed to investigate the presence of biogenic amine (BA)-producing Enterococcus strains in traditional table olives. A total of 186 probable enterococcal isolates were identified from 460 table olive samples, including 240 green and 220 black olives. The ability of Enterococcus spp. to produce five BAs, including tyramine, cadaverine, putrescine, tryptamine, and histamine, was evaluated. The decarboxylase activity of Enterococcus isolates was analyzed using a modified decarboxylase medium. Among these, 71 isolates were determined as BA producers. Species-level identification through 16S rDNA sequence analysis classified these strains as E. faecium (20 isolates), E. faecalis (31 isolates), and E. lactis (20 isolates). Concentrations of BAs were quantified through high-performance liquid chromatography. The maximum concentrations of tyramine, cadaverine, putrescine, tryptamine, and histamine detected in the samples were 257.939 mg/L, 13.923 mg/L, 139.620 mg/L, 30.562 mg/L, and 7.985 mg/L, respectively. The total content of BAs produced by Enterococcus strains from green olives varied between 1.018 mg/L and 259.324 mg/L, while those from black olives ranged from 1.831 mg/L and 214.678 mg/L. Predominant BA detected in green olives was tyramine (257.939 mg/L). Similarly, in black olives, the highest BA levels were recorded for tyramine (207.618 mg/L). These findings highlight the significant presence of BA-producing Enterococcus strains in table olives, emphasizing the need for monitoring and control strategies to ensure food safety.

Abstract 573 | PDF Downloads 113 XML Downloads 19 HTML Downloads 0

References

Ahangari, H., Kurbanoglu, S., Ehsani, A. and Uslu, B. 2021. Latest trends for biogenic amines detection in foods: enzymatic biosensors and nanozymes applications. Trends Food Sci Technol. 112: 75–87. https://doi.org/0.1016/j.tifs.2021.03.037
Akpomie, O.O., Ejechi, B.O., Banach, A.M., Adewuyi, I., Ayobola, E.D., Akpomie, K.G. and Ahmadi, S. 2022. Biogenic amine production from processed animal and plant protein-based foods contaminated with Escherichia coli and Enterococcus feacalis. J Food Sci Technol. 59(12): 4880–4888. https://doi.org/10.1007/s13197-022-05576-0
Alan, Y. 2024. Chemical changes of potential probiotic Lactiplantibacillus plantarum and Lactobacillus pentosus starter cultures in natural Gemlik type black olive fermentation. Food Chem. 434: 137472. https://doi.org/10.1016/j.foodchem.2023.137472
Albayrak, Ç.B. and Kamber, A. 2020. Microflora of naturally fermented table olives and characterization of their lactic acid bacteria. ADU Ziraat Derg. 17(1): 45–52. https://doi.org/10.25308/aduziraat.655257
Anagnostopoulos, D.A., Bozoudi, D. and Tsaltas, D. 2018. Enterococci isolated from cypriot green table olives as a new source of technological and probiotic properties. Fermentation 4(2): 48. https://doi.org/10.3390/fermentation4020048
Anagnostopoulos, D.A. and Tsaltas, D. 2022. Current status, recent advances, and main challenges on table olive fermentation: the present meets the future. Front Microbiol. 12: 797295. https://doi.org/10.3389/fmicb.2021.797295
Banicod, R.J.S., Ntege, W., Njiru, M.N., Abubakar, W.H., Kanthenga, H.T., Javaid, A. and Khan, F. 2025. Production and transformation of biogenic amines in different food products by the metabolic activity of the lactic acid bacteria. Int J Food Microbiol. 428: 110996. https://doi.org/10.1016/j.ijfoodmicro.2024.110996
Barbieri, F., Montanari, C., Gardini, F. and Tabanelli, G. 2019. Biogenic amine production by lactic acid bacteria: a review. Foods 8(1): 17. https://doi.org/10.3390/foods8010017
Beasley, S.S. and Saris, P.E. 2004. Nisin-producing Lactococcus lactis strains isolated from human milk. Appl Environ Microbiol. 70(8): 5051–5053. https://doi.org/10.1128/AEM.70.8.5051-5053.2004
Bover-Cid, S. and Holzapfel, W.H. 1999. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol. 53(1): 33–41. https://doi.org/10.1016/S0168-1605(99)00152-X
Cheng, X.-m., Zhao, T., Yang, T., Wang, C.-h., Bligh, S.W.A. and Wang, Z.-t. 2010. HPLC fingerprints combined with principal component analysis, hierarchical cluster analysis and linear discriminant analysis for the classification and differentiation of Peganum spp. indigenous to China. Phytochem Anal. 21: 279–289. https://doi.org/10.1002/pca.1198
Costa, L.D.F., Falcao, D.A., Grassotti, T.T., Christiano, F.D., Frazzon, J. and Frazzon, A.P.G. 2022. Antimicrobial resistance of enterococci isolated from food in South Brazil: Comparing pre- and post-RDC 20/2011. Ann Acad Bras de Ciênc. 94(1): e20201765. https://doi.org/10.1590/0001-3765202220201765
De Bellis, P., Valerio, F., Sisto, A., Lonigro, S.L. and Lavermicocca, P. 2010. Probiotic table olives: microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC21 in an industrial plant. Int J Food Microbiol. 140(1): 6–13. https://doi.org/10.1016/j.ijfoodmicro.2010.02.024
El Issaoui, K., Senhaji, N.S., Wieme, A., Abrini, J. and Khay, E.O. 2022. Probiotic properties and physicochemical potential of lactic acid bacteria ısolated from Moroccan table olives. J Food Qual Hazards Control. 9(3):169-178. https://doi.org/10.18502/jfqhc.9.3.11155
European Food Safety Authority (EFSA). 2011. Scientific opinion on risk-based control of biogenic amine formation in fermented foods. Panel on Biological Hazards (BIOHAZ). Efsa J. 9(10): 2393–2487. https://doi.org/10.2903/j.efsa.2011.2393
Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO). 2013. Joint FAO/WHO Expert Meeting on the Public Health Risks of Histamine and Other Biogenic Amines from Fish and Fishery Products: Meeting Report, 23–27 July 2012. FAO/WHO, Rome, Italy. ISBN 978-92-5-107849-5
Gao, P., Mohd Noor, N.Q.I. and Md. Shaarani, S. 2022. Current status of food safety hazards and health risks connected with aquatic food products from Southeast Asian region. Crit Rev Food Sci Nutr. 62(13): 3471–3489. https://doi.org/10.1080/10408398.2020.1866490
Ghorbani, M., Molaei, R., Moradi, M., Tajik, H., Salimi, F., Kousheh, S.A. and Koutamehr, M.E. 2021. Carbon dots-assisted degradation of some common biogenic amines: an in vitro study. Food Sci Technol (LWT). 136: 110320. https://doi.org/10.1016/j.lwt.2020.110320
Guba, A., Bába, O., T˝ozsér, J., Cs˝osz, É. and Kalló, G. 2022. Fast and sensitive quantification of AccQ-tag derivatized amino acids and biogenic amines by UHPLC-UV analysis from complex biological samples. Metabolites 12(3): 272. https://doi.org/10.3390/metabo12030272
Houicher, A., Kuley, E., Bensid, A., Yazgan, H. and Özogul, F. 2024. In vitro study of biogenic amine production and gastrointestinal stress tolerance by some enterococci strains. J Sci Food Agric.104(1): 500–507. https://doi.org/10.1002/jsfa.12954
Huang, Y., Song, Y., Chen, F., Jiang, Z., Che, Z., Yang, X. and Chen, X. 2021. Simultaneous determination of eight biogenic amines in the traditional Chinese condiment Pixian Douban using UHPLC–MS/MS. Food Chem. 353: 129423. https://doi.org/10.1016/jfoodchem.2021.129423
Hurtado, A., Reguant, C., Bordons, A. and Rozès, N. 2012. Lactic acid bacteria from fermented table olives. Food Microbiol. 31(1): 1–8. https://doi.org/10.1016/j.fm.2012.01.006
International Olive Council (IOOC). 2004. Trade Standard Applying to Table Olives. International Olive Council, Madrid, Spain. https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-OT-NC1-2004-Eng.pdf (Accessed on: 18 February 2025).
Jeon, A.R., Lee, J.H. and Mah, J.H. 2018. Biogenic amine formation and bacterial contribution in Cheonggukjang, a Korean traditional fermented soybean food. Food Sci Technol (LWT). 92: 282–289. https://doi.org/10.1016/j.lwt.2018.02.047
Kalinowska, K. and Tobiszewski, M. 2023. Green, simple analytical method for total biogenic amines content determination in wine using spectrophotometry. Food Chem. 402: 134457. https://doi.org/10.1016/j.foodchem.2022.134457
Kim, S.Y., Dang, Y.M. and Ha, J.H. 2022. Effect of various seasoning ingredients on the accumulation of biogenic amines in kimchi during fermentation. Food Chem. 380: 132214. https://doi.org/10.1016/j.foodchem.2022.132214
KučeroVá, K., SVobodoVá, H., Tůma, Š., Ondráčková, I. and Plocková, M. 2009. Production of biogenic amines by enterococci. Czech J Food Sci. 27(Special Issue 2): 50–55. https://doi.org/10.17221/673-CJFS
Lauková, A., Kandričáková, A., Buňková, L., Pleva, P. and Ščerbová, J. 2017. Sensitivity to enterocins of biogenic amine-producing faecal Enterococci from ostriches and pheasants. Probiotics Antimicrob. Proteins 9: 483–491. https://doi.org/10.1007/s12602-017-9272-z
Lázaro, C.A., Conte-Júnior, C.A., Canto, A.C., Monteiro, M.L.G., Costa-Lima, B., da Cruz, A.G. and Franco, R.M. 2015. Biogenic amines as bacterial quality indicators in different poultry meat species. Food Sci Technol (LWT). 60(1): 15–21. https://doi.org/10.1016/j.lwt.2014.09.025
Lee, J.H., Jin, Y.H., Lee, J.H., Park, Y.K. and Mah, J.H. 2024. Determination of biogenic amine-producing lactic acid bacteria in kimchi varieties through in vitro analysis and low temperature fermentation. Food Sci Biotechnol. 33: 2301-2312. https://doi.org/10.1007/s10068-024-01627-8
Li, B. and Lu, S. 2020. The importance of amine-degrading enzymes on the biogenic amine degradation in fermented foods: a review. Process Biochem. 99: 331–339. https://doi.org/10.1016/j.procbio.2020.09.012
Li, Y., Yan, T., Yin, L., Cheng, Y. and Jia, X. 2022. Isolation and identification of tyramine-producing bacteria and their biogenic amines formation during fermentation of sufu. Cell Mol Biol. 68(1): 75–88. http://doi.org/10.14715/cmb/2022.68.1.11
Liu, F., Du, L., Xu, W., Wang, D., Zhang, M., Zhu, Y. and Xu, W. 2013. Production of tyramine by Enterococcus faecalis strains in water-boiled salted duck. J Food Prot. 76(5): 854–859. https://doi.org/10.4315/0362-028X.JFP-12-487
Luo, Q., Shi, R., Gong, P., Liu, Y., Chen, W. and Wang, C. 2022. Biogenic amines in Huangjiu (Chinese rice wine): formation, hazard, detection, and reduction. Food Sci Technol (LWT). 168: 113952. https://doi.org/10.1016/j.lwt.2022.113952
Mah, J.H., Park, Y.K., Jin, Y.H., Lee, J.H. and Hwang, H.J. 2019. Bacterial production and control of biogenic amines in Asian fermented soybean foods. Foods 8(2): 85. https://doi.org/10.3390/foods8020085
Maijala, R.L. 1993. Formation of histamine and tyramine by some lactic acid bacteria in MRS-broth and modified decarboxylation agar. Lett Appl Microbiol. 17(1): 40–43. https://doi.org/10.1111/j.1472-765X.1993.tb01431.x
M’hir, S., Minervini, F., Di Cagno, R., Chammem, N. and Hamdi, M. 2012. Technological, functional and safety aspects of Enterococci in fermented vegetable products: a mini-review. Ann Microbiol. 62: 469–481. https://doi.org/10.1007/s13213-011-0363-x
Molaei, R., Tajik, H. and Moradi, M. 2019. Magnetic solid-phase extraction based on mesoporous silica-coated iron oxide nanoparticles for simultaneous determination of biogenic amines in an Iranian traditional dairy product Kashk. Food Control. 101: 1–8. https://doi.org/10.1016/j.foodcont.2019.02.011
Moniente, M., Botello-Morte, L., García-Gonzalo, D., Pagán, R. and Ontañón, I. 2022. Analytical strategies for the determination of biogenic amines in dairy products. Compr Rev Food Sci Food Saf. 21(4): 3612–3646. https://doi.org/10.1111/1541-4337.12980
Mounir, M., Hammoucha, J., Taleb, O., Afechtal, M., Hamouda, A. and Alaoui, M.I. 2021. Inoculation with acetic acid bacteria improves the quality of natural green table olives. Grasas Aceites 72(2): 407–407. https://doi.org/10.3989/gya.1259192
Mourad, K. and Nour-Eddine, K. 2006. Microbiological study of naturally fermented Algerian green olives: isolation and identification of lactic acid bacteria and yeasts along with the effects of brine solutions obtained at the end of olive fermentation on Lactobacillus plantarum. Grasas Aceites 57(3): 292–300. https://doi.org/10.3989/gya.2006.v57.i3.51
Müller, D.G., Oreste, E.Q., Heinemann, M.G., Dias, D. and Kessler, F. 2022. Biogenic amine sensors and its building materials: a review. Eur Polym J. 175: 111221. https://doi.org/10.1016/j.eurpolymj.2022.111221
Ovalle-Marmolejo, X.Y., Redondo-Solano, M., Granados-Chinchilla, F., Miranda-Castilleja, D.E. and Arvizu-Medrano, S.M. 2023. Effect of stress factors on the production of biogenic amines by lactic acid bacteria isolated from fermented Mexican foods (cheese and beer).Food Control 146: 109553. https://doi.org/10.1016/j.foodcont.2022.109553
Pereira, C.I., Matos, D., San Romão, M.V. and Barreto Crespo, M.T. 2009. Dual role for the tyrosine decarboxylation pathway in Enterococcus faecium E17: response to an acid challenge and generation of a proton motive force. Appl Environ Microbiol. 75(2): 345–352. https://doi.org/10.1128/AEM.01958-08
Portilha-Cunha, M.F., Macedo, A.C. and Malcata, F.X. 2020. A review on adventitious lactic acid bacteria from table olives. Foods 9(7): 948. https://doi.org/10.3390/foods9070948
Rehaiem, A., Fhoula, I., Slim, A.F., Boubaker, I.B.B., Chihi, A.B. and Ouzari, H.I. 2016. Prevalence, acquired antibiotic resistance and bacteriocin production of Enterococcus spp. isolated from Tunisian fermented food products. Food Control 63: 259–266. https://doi.org/10.1016/j.foodcont.2015.11.034
Sang, X., Li, K., Zhu, Y., Ma, X., Hao, H., Bi, J. and Hou, H. 2020. The impact of microbial diversity on biogenic amines formation in grasshopper sub shrimp paste during the fermentation. Front Microbiol. 11: 782. https://doi.org/10.3389/fmicb.2020.00782
Shalaby, A.R., Anwar, M.M., Sallam, E.M. and Emam, W.H. 2016. Quality and safety of irradiated food regarding biogenic amines: RAS cheese. Int J Food Sci Technol. 51(4): 1048–1054. https://doi.org/10.1111/ijfs.13058
Silva, I.P., Dias, L.G., da Silva, M.O., Machado, C.S., Paula, V.M.B., Evangelista-Barreto, N.S. and Estevinho, L.M. 2020. Detection of biogenic amines in mead of social bee.Food Sci Technol (LWT). 121: 108969. https://doi.org/10.1016/j.lwt.2019.108969
Sun, L., Guo, W., Zhai, Y., Zhao, L., Liu, T., Yang, L. and Duan, Y. 2023. Screening and the ability of biogenic amine-degrading strains from traditional meat products in Inner Mongolia. Food Sci Technol (LWT). 176: 114533. https://doi.org/10.1016/j.lwt.2023.114533
Tıraş, Z.E. and Yıldırım, H.K. 2021. Application of mixed starter culture for table olive production. Grasas Aceites 72(2): 405–405. https://doi.org/10.3989/gya.0220201
Tufariello, M., Anglana, C., Crupi, P., Virtuosi, I., Fiume, P., Di Terlizzi, B. and Bleve, G. 2019. Efficacy of yeast starters to drive and improve Picual, Manzanilla and Kalamàta table olive fermentation. J Sci Food Agric. 99(5): 2504–2512. https://doi.org/10.1002/jsfa.9460
Turna, N.S., Chung, R. and Mclntyre, L. 2024. A review of biogenic amines in fermented foods: occurrence and health effects. Heliyon 10: e24501. https://doi.org/10.1016/j.heliyon.2024.e24501
Vesković-Moračanin, S., Stefanović, S., Borović, B., Nastasijevic, I., Milijasevic, M., Stojanova, M. and Đukić, D. 2022. Assessment of biogenic amine production by lactic acid bacteria isolated from Serbian traditionally fermented foods. Acta Agric Serb. 27(53): 49‒55. https://doi.org/10.5937/AASer2253049V
Vinci, G. and Maddaloni, L. 2020. Biogenic amines in alcohol-free beverages. Beverages 6(1): 17. https://doi.org/10.3390/beverages6010017
Yalçınkaya, S. and Kılıç, G.B. 2019. Isolation, identification and determination of technological properties of the halophilic lactic acid bacteria isolated from table olives. J Food Sci Technol. 56(4): 2027–2037. https://doi.org/10.1007/s13197-019-03679-9
Yilmaz, N. 2024. Quantitative analysis of biogenic amine production of different lactic acid bacteria isolated from ready-to-eat packaged fish products. Vet Res Forum. 15(10): 537–543. https://doi.org/10.30466/vrf.2024.2024103.4193
Yilmaz, N., Özogul, F., Moradi, M., Fadiloglu, E.E., Šimat, V. and Rocha, J.M. 2022. Reduction of biogenic amines formation by foodborne pathogens using postbiotics in lysine-decarboxylase broth. J Biotechnol. 358: 118–127. https://doi.org/10.1016/j.jbiotec.2022.09.003
Zdolec, N., Mikuš, T. and Kiš, M. 2022. Lactic acid bacteria in meat fermentation: dry sausage safety and quality. In: Ray, R.C., Paramithiotis, S., Azevedo, V.A.deC. and Montet, D. (Eds.) Applied Biotechnology Reviews, Lactic Acid Bacteria in Food Biotechnology. Elsevier, Amsterdam, the Netherlands, Chap. 8, pp. 145–159. ISBN 9780323898751. https://doi.org/10.1016/B978-0-323-89875-1.00007-9
Zhang, Y., Shan, B., Gong, J. and Hu, Y. 2022. Mechanism of biogenic amine synthesis of Enterococcus faecium isolated from Sanchun ham. Food Sci Nutr. 10(6): 2036–2049. https://doi.org/10.1002/fsn3.2820