Evaluation of the Functional Properties and Safety of Enterocin-producing Enterococcus faecium BT29.11 Isolated from Turkish Beyaz Cheese and its Inhibitory Activity against Listeria monocytogenes in UHT Whole Milk English

Main Article Content

Melike Seda Toplu
Banu Özden Tuncer


beyaz cheese, enterocin, Enterococcus, probiotic, safety evaluation


The goal of this research was to evaluate the functional properties and safety of antilisterial Enterococcus faecium BT29.11 isolated from Turkish Beyaz cheese. E. faecium BT29.11 showed the highest inhibitory activity against Listeria monocytogenes, followed by Staphylococcus aureus and vancomycin-resistant enterococci. E. faecium BT29.11 was identified by 16S rDNA sequence analysis, and genus- and species-specific PCR. The entA, entB, and entX structural genes were detected in E. faecium BT29.11. It was determined that the BT29.11 strain was a slow acid producer and did not show extracellular proteolytic and lipolytic activity. E. faecium BT29.11 demonstrated good probiotic properties. E. faecium BT29.11 was found to be ɣ-hemolytic, gelatinase-negative, and susceptible to clinically important antibiotics. Only ermC and acm were detected in the BT29.11 strain. E. faecium BT29.11 decreased the growth of L. monocytogenes in ultra-high temperature (UHT) milk. The findings of this research indicated that E. faecium BT29.11, an antilisterial strain, might be employed as a probiotic adjunct culture in fermented food products.

Abstract 91 | PDF Downloads 108 HTML Downloads 35 XML Downloads 29


Abeijón, M.C., Medina, R.B., Katz, M.B. and González, S.N., 2006. Technological properties of Enterococcus faecium isolated from ewe’s milk and cheese with importance for flavour development. Canadian Journal of Microbiology 52: 237–245. 10.1139/w05-136

Ahmadova, A., Todorov, S.D., Choiset, Y., Rabesona, H., Mirhadi Zadi, T., Kuliyev, A., et al. 2013. Evaluation of antimicrobial activity, probiotic properties and safety of wild strain Enterococcus faecium AQ71 isolated from Azerbaijani Motal cheese. Food Control. 30(2): 631–641. 10.1016/j.foodcont.2012.08.009

Almeida, T.Jd., de Oliveira, A.P.D., Santos, T.M.B. and Dias, F.S., 2022. Antistaphylococcal and antioxidant activities of bacteriocinogenic lactic acid bacteria and essential oil in goat coalho cheese. Journal of Applied Microbiology 133: 2014–2026. 10.1111/jam.15713

Altınkaynak, T. and Tuncer, Y., 2020. Chracterisation of bacteriocin produced by antilisterial Enterococcus mundtii YB6.30 isolated from fermented sucuk. The Journal of Food/Gıda 45(5): 963–976. 10.15237/gida.GD20081

Avcı, M. and Özden Tuncer, B., 2017. Safety evaluation of enterocin producer Enterococcus sp. strains isolated from traditional Turkish cheeses. Polish Journal of Microbiology 66(2): 223–233. 10.5604/01.3001.0010.7839

Basson, A., Flemming, L.A. and Chenia, H.Y., 2008. Evaluation of adherence, hydrophobicity, aggregation characteristics and biofilm development of Flavobacterium johnsoniae-like isolates from South African aquaculture systems. Microbial Ecology 55: 1–14. 10.1007/s00248-007-9245-y

Ben Belgacem, Z., Abriouel, H., Omar, N.B., Lucas, R., Martinez-Canamero, M., Galvez, A., et al. 2010. Antimicrobial activity, safety aspects, and some technological properties of bacteriocinegenic Enterococcus faecium from artisanal Tunisian fermented meat. Food Control 21: 462–470. 10.1016/j.foodcont.2009.07.007

Beresford, T.P., Fitzsimons, N.A., Brennan, N.L. and Cogan, T.M., 2001. Recent advances in cheese microbiology. International Dairy Journal 11: 259–274. 10.1016/S0958-6946(01)00056-5

Bradley, R.L., Arnold, E., Barbano, D.M., Semerad, R.G., Smith, D.E. and Vines, B.K., 1992. Chemical and physical methods. In: Marshall R.T., editor. Standard methods for the examination of dairy products. 16th edition, Washington D.C.: American Public Health Association; pp. 433–531.

Brennan, M., Wansmail, B., Johnson, B.C. and Ray, B., 1986. Cellular damage in dried Lactobacillus acidophilus. Journal of Food Protection 49: 47–53. 10.4315/0362-028X-49.1.47

Camargo, I.L.B.C., Gilmore, M.S. and Darini, A.L.C., 2006. Multilocus sequence typing and analysis of putative virulence factors in vancomycin-resistant and vancomycin-sensitive Enterococcus faecium isolates from Brazil. Clinical Microbiology Infection 12(11): 1123–1130. 10.1111/j.1469-0691.2006.01496.x

Cancilla, M.R., Powell, L.B., Hillier, A.J. and Davidson, B.E., 1992. Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Applied Environmental Microbiology 58(5): 1772–1775. 10.1128/aem.58.5.1772-1775.1992

Cariolato, D., Andrighetto, C. and Lombardi, A., 2008. Occurrence of virulence factors and antibiotic resistances in Enterococcus faecalis and Enterococcus faecium collected from dairy and human samples in North Italy. Food Control 19: 886–892. 10.1016/j.foodcont.2007.08.019

Chajęcka-Wierzchowska, W., Zadernowska, A. and García-Solache, M., 2020. Ready-to-eat dairy products as a source of multidrug-resistant Enterococcus strains: phenotypic and genotypic characteristics. Journal of Dairy Science 103(5): 4068–4077. 10.3168/jds.2019-17395

Chajęcka-Wierzchowska, W., Zadernowska, A. and Łaniewska-Trokenheim, Ł., 2017. Virulence factors of Enterococcus spp. presented in food. LWT-Food Science and Technology 75: 670–676. 10.1016/j.lwt.2016.10.026

CLSI. 2020. Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA.

Collado, M.C., Meriluoto, J. and Salminen, S., 2007. Measurement of aggregation properties between probiotics and pathogens: in vitro evaluation of different methods. Journal of Microbiological Methods 71: 71–74. 10.1016/j.mimet.2007.07.005

Conway, P.L., Gorbach, S.L. and Goldin, B.R., 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. Journal of Dairy Science 70:1–12. 10.3168/jds.S0022-0302(87)79974-3

Dapkevicius, M.dL.E., Sgardioli, B., Câmara, S.P.A., Poeta, P. and Malcata, F.X., 2021. Current trends of enterococci in dairy products: a comprehensive review of their multiple roles. Foods 10: 821. 10.3390/foods10040821

de Melo Pereira, G.V., de Oliveira Coelho, B., Júnior, A.I.M., Thomaz-Soccol, V. and Soccol, C.R., 2018. How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances 36: 2060–2076. 10.1016/j.biotechadv.2018.09.003

de Vuyst L., Foulquié Moreno, MR., Revets H., 2003. Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. International Journal of Food Microbiology 84(3): 299–318. 10.1016/S0168-1605(02)00425-7

de Vuyst. L. and Vandamme, E.J., 1994. Bacteriocins of lactic acid bacteria, microbiology, genetics and applications. Chapman and Hall, New York.

Demirgül, F. and Tuncer, Y., 2017. Detection of antibiotic resistance and resistance genes in enterococci isolated from Sucuk, a traditional Turkish dry-fermented sausage. Korean Journal for Food Science of Animal Resources 37(5): 670–681. 10.5851/kosfa.2017.37.5.670

Depardieu, F., Perichon, B. and Courvalin, P., 2004. Detection of van alphabet and identification of enterococci and staphylococci at the species level by multiplex PCR. Journal of Clinical Microbiology 42(12): 5857–5860. 10.1128/FJCM.42.12.5857-5860.2004

Domann, E., Hain, T., Ghai, R., Billion, A., Kuenne, C., Zimmermann, K., et al. 2007. Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic Enterococcus faecalis strain Symbioflor 1. International Journal of Medical Microbiology 297(7–8): 533–539. 10.1016/j.ijmm.2007.02.008

Dutka-Malen, S., Evers, S. and Courvalin, P., 1995. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. Journal of Clinical Microbiology 33(1): 24–27. 10.1128/jcm.33.1.24-27.1995

Eaton, T. and Gasson, M.J., 2001. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Applied and Environmental Microbiology 67: 1628–1635. 10.1128/FAEM.67.4.1628-1635.2001

Edalatian, M.R., Najafi, M.B.H., Mortazavi, S.A., Alegría, Á., Delgado, S., Bassami, M.R., et al. 2012. Production of bacteriocins by Enterococcus spp. isolated from traditional, Iranian, raw milk cheeses, and detection of their encoding genes. European Food Research and Technology 234: 789–796. 10.1007/s00217-012-1697-8

Edwards, U., Rogall, T., Blocker, H., Emde, M. and Bottger, E.C., 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research 17: 7843–7853. 10.1093/nar/17.19.7843

Farias, F.M., Teixeira, L.M., Vallim, D.C., Bastos, M.C.F., Miguel, M.A.L. and Bonelli, R.R., 2021. Characterization of Enterococcus faecium E86 bacteriocins and their inhibition properties against Listeria monocytogenes and vancomycin-resistant Enterococcus. Brazilian Journal of Microbiology 52(3): 1513–1522. 10.1007/s42770-021-00494-3

Favaro, L., Basaglia, M., Casella, S., Hue, I., Dousset, X., de Melo Franco, B.D.G., et al. 2014. Bacteriocinogenic potential and safety evaluation of non-starter Enterococcus faecium strains isolated from homemade white brine cheese. Food Microbiology 38: 228–239. 10.1016/j.fm.2013.09.008

Foulquié Moreno, M.R., Sarantinopoulos, P., Tsakalidou, E. and De Vuyst, L., 2006. The role and application of enterococci in food and health. International Journal of Food Microbiology 106(1): 1–24. 10.1016/j.ijfoodmicro.2005.06.026

Franz, C.M.A.P., Toit, M.T., von Holy, A., Schillinger, U. and Holzapfel, W.H., 1997. Production of nisin-like bacteriocins by Lactococcus lactis strains isolated from vegetables. Journal of Basic Microbiology 37(3): 187–196. 10.1002/jobm.3620370307

Franz, C.M.A.P., van Belkum, M.J., Holzapfel, W.H., Abriouel, H. and Galvez, A., 2007. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiology Reviews 31: 293–310. 10.1111/j.1574-6976.2007.00064.x

Garrido, A.M., Gálvez, A. and Pulido, R.P., 2014. Antimicrobial resistance in enterococci. Journal of Infectious Diseases & Therapy 2: 150. 10.4172/2332-0877.1000150

Ghrairi, T., Frere, J., Berjeaud, J.M. and Manai, M., 2008. Purification and characterisation of bacteriocins produced by Enterococcus faecium from Tunisian Rigouta cheese. Food Control 19(2): 162–169. 10.1016/j.foodcont.2007.03.003

Gilliland, S.E. and Walker, D.K., 1990. Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. Journal of Dairy Science 73: 905–911. 10.3168/jds.s0022-0302(90)78747-4

Giraffa G., 2003. Functionality of enterococci in dairy products. International Journal Food Mibrobiology 88: 215–222. 10.1016/s0168-1605(03)00183-1

Gök Charyyev, M., Özden Tuncer, B., Akpınar Kankaya, D. and Tuncer, Y., 2019. Bacteriocinogenic properties and safety evaluation of Enterococcus faecium YT52 isolated from boza, a traditional cereal based fermented beverage. Journal of Consumer Protection and Food Safety 14(1): 41–53. 10.1007/s00003-019-01213-9

Graham, K., Stack, H. and Rea, R., 2020. Safety, beneficial and technological properties of enterococci for use in functional food applications–a review. Critical Reviews in Food Science and Nutrition 10: 1–26. 10.1080/10408398.2019.1709800

Hanchi, H., Mottawea, W., Sebei, K. and Hammami, R., 2018. The genus Enterococcus: between probiotic potential and safety concerns-an update. Frontiers Microbiology 9: 1791. 10.3389/fmicb.2018.01791

Holzapfel, W., Arini, A., Aeschbacher, M., Coppolecchia, R. and Pot, B.. 2018. Enterococcus faecium SF68 as a model for efficacy and safety evaluation of pharmaceutical probiotics. Beneficial Microbes 9(3): 375–388. 10.3920/bm2017.0148

Inoğlu, Z.N. and Tuncer, Y., 2013. Safety assessment of Enterococcus faecium and Enterococcus faecalis strains isolated from Turkish Tulum cheese. Journal of Food Safety 33: 369–377. 10.1111/jfs.12061

İspirli, H., Demirbaş, F. and Dertli, E., 2017. Characterization of functional properties of Enterococcus spp. isolated from Turkish white cheese. LWT-Food Science and Technology 75: 358–365. 10.1016/j.lwt.2016.09.010

Jackson, C.R., Fedorka-Cray, P.J. and Barrett, J.B., 2004. Use of the genus and species-specific multiplex PCR for identification of enterococci. Journal of Clinical Microbiology 42(8): 3558–3565. 10.1128/jcm.42.8.3558-3565.2004

Jahansepas, A., Sharifi, Y., Aghazadeh, M. and Ahangarzadeh Rezaee, M., 2020. Comparative analysis of Enterococcus faecalis and Enterococcus faecium strains isolated from clinical samples and traditional cheese types in the Northwest of Iran: antimicrobial susceptibility and virulence traits. Archives of Microbiology 202: 765–772. 10.1007/s00203-019-01792-z

Joghataei, M., Yavarmanesh, M. and Dovom, M.R.E. 2017. Safety evaluation and antibacterial activity of enterococci isolated from Lighvan cheese. Journal of Food Safety 37(1): e12289. 10.1111/jfs.12289

Kahn, H., Flint, S. and Yu, P-L., 2010. Enterocins in food preservation. International Journal of Food Microbiology 141(1–2): 1–10. 10.1016/j.ijfoodmicro.2010.03.005

Kouhi, F., Mirzaei, H., Nan, Y., Khandaghi, J. and Javadi, A., 2022. Potential probiotic and safety characterisation of enterococcus bacteria isolated from indigenous fermented motal cheese. International Dairy Journal 126: 105247. 10.1016/j.idairyj.2021.105247

Landeta, G., Curiel, J.A., Carrascosa, A.V., Muñoz, R. and de las Rivas, B., 2013. Technological and safety properties of lactic acid bacteria isolated from Spanish dry-cured sausages. Meat Science 95(2): 272–280. 10.1016/j.meatsci.2013.05.019

Li, B., Zhan, M., Evivie, S.E., Jin, D., Zhao, L., Chowdhury, S., et al. 2018. Evaluating the safety of potential probiotic Enterococcus durans KLDS6.0930 using whole genome sequencing and oral toxicity study. Frontiers Microbiology 9: 1943. 10.3389/fmicb.2018.01943

Martín, B., Hugas, M., Bover-Cid, S., Veciana-Nogués, M.T. and Aymerich, T., 2006. Molecular, technological and safety characterization of Gram-positive catalase positive cocci from slightly fermented sausages. International Journal of Food Microbiology 107: 148–158. 10.1016/j.ijfoodmicro.2005.08.024

Nami, Y., Vaseghi Bakhshayesh, R., Mohammadzadeh Jalaly, H., Lotf, H., Eslami, S. and Hejazi, M.A., 2019. Probiotic properties of Enterococcus isolated from artisanal dairy products. Frontiers Microbiology 10: 1685. 10.3389/fmicb.2019.00300

Niu, H., Yu, H., Hu, T., Tian, G., Zhang, L., Guo, X., et al. 2016. The prevalence of aminoglycoside-modifying enzyme and virulence genes among enterococci with high-level aminoglycoside resistance in Inner Mongolia, China. Brazilian Journal of Microbiology 47: 691–696. 10.1016/j.bjm.2016.04.003

Ouoba, L.I.I., Lei, V. and Jensen, L.B., 2008. Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. International Journal of Food Microbiology 121: 217–224. 10.1016/j.ijfoodmicro.2007.11.018

Özdemir, R. and Tuncer, Y., 2020. Detection of antibiotic resistance profiles and aminoglycoside-modifying enzyme (AME) genes in high-level aminoglycoside-resistant (HLAR) enterococci isolated from milk and traditional cheeses in Turkey. Molecular Biology Reports 47: 1703–1712. 10.1007/s11033-020-05262-4

Özden Tuncer, B., Ay, Z. and Tuncer, Y., 2013. Occurrence of enterocin genes, virulence factors and antibiotic resistance in three bacteriocin producer Enterococcus faecium strains isolated from Turkish Tulum cheese. Turkish Journal of Biology 37: 443–449. 10.3906/biy-1209-26

Özkalp, B., Özden, B., Tuncer, Y., Şanlıbaba, P. and Akçelik, M., 2007. Technological characterization of wild-type Lactococcus lactis strains isolated from raw milk and traditional fermented milk products in Turkey. Lait 87: 521–534. 10.1051/lait:2007033

Özkan, E.R., Demirci, T. and Akın, N., 2021. In vitro assessment of probiotic and virulence potential of Enterococcus faecium strains derived from artisanal goatskin casing Tulum cheeses produced in central Taurus Mountains of Turkey. LWT-Food Science and Technology 141: 110908. 10.1016/j.lwt.2021.110908

Özmen Toğay, S., Ay, M., Güneşer, O. and Yüceer, Y.K., 2016. Investigation of antimicrobial activity and entA and entB genes in Enterococcus faecium and Enterococcus faecalis strains isolated from naturally fermented Turkish white cheeses. Food Science and Biotechnology 25(6): 1633–1637. 10.1007/s10068-016-0251-z

Öztürk, H., Geniş, B., Özden Tuncer, B. and Tuncer, Y., 2023. Bacteriocin production and technological properties of Enterococcus mundtii and Enterococcus faecium strains isolated from sheep and goat colostrum. Veterinary Research Communications. Online ahead of print. 10.1007/s11259-023-10080-7

Rehaiem, A., Martínez, B., Manai, M. and Rodríguez, A., 2012. Technological performance of the enterocin A producer Enterococcus faecium MMRA as a protective adjunct culture to enhance hygienic and sensory attributes of traditional fermented milk ‘Rayeb’. Food and Bioprocess Technology 5(6): 2140–2150. 10.1007/s11947-010-0501-7

Reviriego, C., Eaton, T., Martin, R., Jimenez, E., Fernandez, L., Gasson, M.J., et al. 2005. Screening of virulence determinants in Enterococcus faecium strains isolated from breast milk. Journal of Human Lactation 21(2): 131–137. 10.1177/0890334405275394

Ruiz, P., Barragan, I., Sesena, S. and Palop, M.L., 2016. Functional properties and safety assessment of lactic acid bacteria isolated from goat colostrum for application in food fermentations. International Journal of Dairy Technology 69(4): 559–568. 10.1111/1471-0307.12293

Ryan, M.P., Rea, M.C., Hill, C. and Ross, R.P., 1996. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad spectrum bacteriocin lacticin 3147. Applied and Environmental Microbiology 62: 612–619. 10.1128/aem.62.2.612-619.1996

Sahoo, T.K., Jena, P.K., Nagar, N., Patel, A.K. and Seshadri, S., 2015. In vitro evaluation of probiotic properties of lactic acid bacteria from the gut of Labeo rohita and Catla catla. Probiotics and Antimicrobial Proteins 7: 126–136. 10.1007/s12602-015-9184-8

Semedo, T., Santos, M.A., Martins, P., Lopes, M.F.S., Marques, J.J.F., Tenreiro, R., et al. 2003. Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. Journal of Clinical Microbiology 41(6): 2569–2576. 10.1128/jcm.41.6.2569-2576.2003

Settanni, L., Guarcello, R., Gaglio, R., Francesco, N., Aleo, A., Felis, G.E., et al. 2014. Production, stability, gene sequencing and in situ anti-Listeria activity of mundticin KS expressed by three Enterococcus mundtii strains. Food Control 35: 311–322. 10.1016/J.FOODCONT.2013.07.022

Son, S-H., Yang, S-J., Jeon, H-L., Yu, H-S., Lee, N-K., Park, Y-S., et al. 2018. Antioxidant and immunostimulatory effect of potential probiotic Lactobacillus paraplantarum SC61 isolated from Korean traditional fermented food, jangajji. Microbial Pathogenesis 125: 486–492. 10.1016/j.micpath.2018.10.018

Su, Y.A., Sulavik, M.C., He, P., Makinen, K.K., Makinen, P., Fiedler, S., et al. 1991. Nucleotide sequence of the gelatinase gene (gelE) from Enterococcus faecalis subsp. liquefaciens. Infection and Immunity 59: 415–420. 10.1128/iai.59.1.415-420.1991

Teply, M., 1984. Ciste Mlekarske Kultury. Phara. SNTL Nakladatelstvi. Technicke Litertury. In: Kurmann J.A., editor. Starters for Fermented Milks. IDF Bulletin 227: 41–55.

Terzić-Vidojević, A., Veljović, K., Popović, N., Tolinački, M. and Golić, N., 2021. Enterococci from raw-milk cheeses: current knowledge on safety, technological, and probiotic concerns. Foods 10: 2753. 10.3390/foods10112753

Tsanasidou, C., Asimakoula, S., Sameli, N., Fanitsios, C., Vandera, E., Bosnea, L., et al. 2021. Safety evaluation, biogenic amine formation, and enzymatic activity profiles of autochthonous enterocin-producing Greek cheese isolates of the Enterococcus faecium/durans group. Microorganisms 9(4): 777. 10.3390/microorganisms9040777

Urshev, Z. and Yungareva, T., 2021. Initial safety evaluation of Enterococcus faecium LBB.E81. Biotechnology & Biotechnological Equipment 35(1): 11–17. 10.1080/13102818.2020.1840438

Vakulenko, S.B., Donabedian, S.M., Voskresenskiy, A.M., Zervos, M.J., Lerner, S.A. and Chow, J.W., 2003. Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrobial Agents and Chemotherapy 47(4): 1423–1426. 10.1128/FAAC.47.4.1423-1426.2003

Valledor, S.J.D., Dioso, C.M., Bucheli, J.E.V., Park, Y.J., Suh, D.H., Jung, E.S., et al. 2022. Characterization and safety evaluation of two beneficial, enterocin-producing Enterococcus faecium strains isolated from kimchi, a Korean fermented cabbage. Food Microbiology 102: 103886. 10.1016/j.fm.2021.103886

van Belkum, M.J., Hayema, B.J., Geis, A., Kok, J. and Venema, G., 1989. Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid. Applied and Environmental Microbiology 55: 1187–1191. 10.1128/Faem.55.5.1187-1191.1989

Vankerckhoven, V., Autgaerden, T.V., Vael, C., Lammens, C., Chapelle, S., Rossi, R., et al. 2004. Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. Journal of Clinical Microbiology 42(10): 4473–4479. 10.1128/jcm.42.10.4473-4479.2004

Vinderola, C.G. and Reinheimer, J.A., 2003. Lactic acid starter and probiotic bacteria: a Comparative “in vitro’’ study of probiotic characteristics and biological barrier resistance. Food Research International 36: 895–904. 10.1016/S0963-9969(03)00098-X

Yang, J-M. and Moon G-S., 2021. Partial characterization of an anti-listerial bacteriocin from Enterococcus faecium CJNU 2524. Food Science of Animal Resources 41(1): 164–171. 10.5851/kosfa.2020.e98

Yogurtcu, N.N. and Tuncer, Y., 2013. Antibiotic susceptibility patterns of Enterococcus strains isolated from Turkish Tulum cheese. International Journal of Dairy Technology 66(2): 236–242. 10.1111/1471-0307.12014

Yousif, N.M.K., Dawyndt, P., Abriouel, H., Wijaya, A., Schillinger, U., Vancanneyt, M., et al. 2005. Molecular characterization, technological properties and safety aspects of enterococci from “Hussuwa”, an African fermented sorghum product. Journal of Applied Microbiology 96: 216–228. 10.1111/j.1365-2672.2004.02450.x

Zendo, T., Eungruttanagorn, N., Fujioka, S., Tashiro, Y., Nomura, K., Sera, Y., et al. 2005. Identification and production of a bacteriocin from Enterococcus mundtii QU 2 isolated from soybean. Journal of Applied Microbiology 99: 1181–1190. 10.1111/j.1365-2672.2005.02704.x

Zommiti, M., Cambronel, M., Maillot, O., Barreau, M., Sebei, K., Feuilloley, M., et al. 2018. Evaluation of probiotic properties and safety of Enterococcus faecium isolated from artisanal Tunisian meat “Dried Ossban”. Frontiers Microbiology 9: 1685. 10.3389/Ffmicb.2018.01685