Proximate analysis of lipid composition in Moroccan truffles and desert truffles

Main Article Content

Fatima Henkrar
Lahsen Khabar

Keywords

desert truffles, discrimination, fatty acid, gas chromatography, Moroccan truffle, sterol

Abstract

Lipid composition in truffle is essential for nutraceutical and medicinal purposes. Currently, there is no data regarding the lipid content in Moroccan truffles. Therefore, we determined the fatty acid and sterol composition of six Moroccan truffles and desert truffles. The gas chromatography analysis revealed the predominance of fatty palmitic, oleic and linoleic acids. The prominent sterol components were brassicasterol and ergosterol. Besides, the sterol analysis discriminated between the Tuber and Terfezia truffles. These differences seem to be exploitable at a taxonomic level. This is a preliminary report disclosing the fatty acid and sterol composition of Moroccan truffles, indicating the potential use of lipids analysis, especially sterol analysis, as biomarker for truffles distinction.

Abstract 58 | PDF Downloads 26 HTML Downloads 6 XML Downloads 6

References

Akyüz, M., 2013. Nutritive value, flavonoid content and radical scavenging activity of the truffle (Terfezia boudieri Chatin). Journal of Soil Science and Plant Nutrition. 13:143–151.

Al-Shabibi, M.M.A., Toma, S.J. and Haddad, B.A., 1982. Studies on Iraqi truffles. I. Proximate analysis and characterization of lipids. Canadian Institute of Food Technology Journal. 15:200–202. 10.4067/S0718-95162013005000013

Bokhary, H.A. and Parvez, S., 1995. Studies on the chemical composition of the Ascomycete fungus Phaeangium lefebvrei Pat. Journal of King Saud University. 7:215–224.

Bokhary, H.A., Suleiman, A.A. and Basalah, M.O., 1989. The fatty acid components of the desert truffle ‘Al Kamah’ of Saudi Arabia. Journal of Food Protection. 52(9):668–669. 10.4315/0362-028X-52.9.668

Dahham, S.S., Al-Rawi, S.S., Ibrahim, A.H., Aman, S.A.M. and Amin, M.S.A.M., 2018. Antioxidant, anticancer, apoptosis properties and chemical composition of black truffle Terfezia claveryi. Saudi Journal of Biological Sciences. 25:1524–1534. 10.1016/j.sjbs.2016.01.031

Doğan, H.H. and Aydın, S., 2013. Determination of antimicrobial effect, antioxidant activity and phenolic contents of desert truffle in Turkey. African Journal of Traditional, Complementary and Alternative Medicines. 10:52–58.

Fontaine, J., Grandmougin-Ferjani, A., Hartmann, M.A. and Sancholle, M., 2001. Sterol biosynthesis by the arbuscular mycorrhizal fungus Glomus intraradices. Lipids. 36:1357–1363. 10.1007/s11745-001-0852-z

Hamza, A., Zouari, N., Zouari, S., Jdir, H., Zaidi, S., Gtari, M. and Neffati, M., 2016. Nutraceutical potential, antioxidant and antibacterial activities of Terfezia boudieri Chatin, a wild edible desert truffle from Tunisia arid zone. Arabian Journal of Chemistry. 9:383–389. 10.1016/j.arabjc.2013.06.015

Harki, E., Klaebe, A., Talou, T. and Dargent, R., 1996. Identification and quantification of Tuber melanosporum Vitt. sterols. Steroids. 61:609–612. 10.1016/s0039-128x(96)00121-3

Khabar, L., 2014. Mediterranean basin: North Africa. Ch.10. In: Kagan-Zur, V., Roth-Bejerano, N., Sitrit, Y. and Morte, A. (eds.) Desert truffles: phylogeny, physiology, distribution and domestication. Springer, Berlin, Heidelberg, pp. 143–158.

Khabar, L., Najim, L., Janex-Favre, M. and Paraguey-Leduc, A., 2001. Contribution à l’étude de la flore mycologique du Maroc. Les truffes marocaines. Bulletin de la Société mycologique de France. 117:213–229.

Lee, H., Nam, K., Zahra, Z. and Farooqi, M.Q.U., 2020. Potentials of truffles in nutritional and medicinal applications: a review. Fungal Biology Biotechnology. 7(9):1–17. 10.1186/s40694-020-00097-x

Morte, A., Kagan-Zur, V., Navarro-Ródenas, A. and Sitrit, Y., 2021. Cultivation of desert truffles—a crop suitable for arid and semi-arid zones. Agronomy. 11:1462. 10.3390/agronomy11081462

Murcia, M.A., Martínez-Tomé, M., Vera, A., Morte, A., Gutierrez, A., Honrubia, M. and Jiménez, A.M., 2003. Effect of industrial processing on desert truffles Terfezia claveryi Chatin and Picoa juniperi Vittadini): proximate composition and fatty acids. Journal of the Science of Food and Agriculture. 83:535–541. 10.1002/jsfa.1397

Sancholle, M., Weete, J.D., Kulifaj, M. and Montant, C., 1988. Changes in lipid composition during ascocarp development of the truffle, Tuber melanosporum. Mycologia. 80:900–903. 10.2307/3807580

Shah, N.N., Hokkanen, S., Pastinen O., Eljamil, A. and Shamekh, S., 2020. A study on the fatty acid composition of lipids in truffles selected from Europe and Africa. 3 Biotech. 10:415. 10.1007/s13205-020-02414-y

Sokoła-Wysoczańska, E., Wysoczański, T., Wagner, J, Czyż, K., Bodkowski, R., Lochyński, S. and Patkowska-Sokoła, B., 2018. Polyunsaturated fatty acids and their potential therapeutic role in cardiovascular system disorders—a review. Nutrients. 10(10): 1561. 10.3390/nu10101561

Sommer, K., Krauß, S. and Vetter, W., 2020. Differentiation of European and Chinese truffle (Tuber sp.) species by means of sterol fingerprints. Journal of Agricultural and Food Chemistry. 68(49):14393–14401. 10.1021/acs.jafc.0c06011

Tang, Y., Li, H.-M. and Tang, Y.-J., 2012. Comparison of sterol composition between Tuber fermentation mycelia and natural fruiting bodies. Food Chemistry. 132(3):1207–1213. 10.1016/j.foodchem.2011.11.077

Tang, Y., Li, Y.-Y., Li, H.-M., Wan, D.-J. and Tang, Y.-J., 2011. Comparison of lipid content and fatty acid composition between tuber fermentation mycelia and natural fruiting bodies. Journal of Agricultural and Food Chemistry. 59:4736–4742. 10.1021/jf200141s

Tejedor-Calvo, E., Amara, K., Reis, F.S., Barros, L., Martins, A., Calhelha, R.C., Venturini, M.E., Blanco, D., Redondo, D., Marco, P. and Ferreira, I.C.F.R., 2021. Chemical composition and evaluation of antioxidant, antimicrobial and antiproliferative activities of tuber and Terfezia truffles. Food Research International. 140:110071. 10.1016/j.foodres.2020.110071

Tejedor-Calvo, E., García-Barreda, S., Sánchez, S., Morte, A., Siles-Sánchez, M.D.N., Soler-Rivas, C., Santoyo, S. and Marco, P., 2022. Application of pressurized liquid extractions to obtain bioactive compounds from Tuber aestivum and Terfezia claveryi. Foods. 11(3):298. 10.3390/foods11030298

Veeraraghavan, V.P., Hussain, S., Balakrishna, J.P., Dhawale, L., Kullappan, M., Ambrose, J.M. and Mohan, S.K., 2021. A comprehensive and critical review on ethnopharmacological importance of desert truffles: Terfezia claveryi, Terfezia boudieri, and Tirmania nivea. Food Reviews International. 0:1–20. 10.1080/87559129.2021.1889581

Weete, J.D., Kulifaj, M., Montant, C., Nes, W.R. and Sancholle, M., 1985. Distribution of sterols in fungi. II. Brassicasterol in Tuber and Terfezia species. Canadian Journal of Microbiology. 31: 1127–1130. 10.1139/m85-212