Determination of the total phenolic content of commercially available green teas using an in vitro gastrointestinal system: a preliminary study
Main Article Content
Keywords
catechin; HPLC; green tea; in vitro assays; phenolic compounds
Abstract
This preliminary study evaluated changes in total phenolic content and catechin and epicatechin levels in commercially available green teas through an in vitro digestion. Samples (1.5% dry tea in 100 mL water at 80°C) were analyzed for total soluble solids, pH, and color. The initial total phenolic content ranged from 381.19–1779.50 µg gallic acid equivalent/mL, decreasing to 315.22–1266.37 µg/mL in the small intestine. Epicatechin decreased from 7.64–13.97 µg/mL to 4.53–9.19 µg/mL, while catechin dropped from 13.13–24.03 µg/mL to 5.43–14.03 µg/mL. Significant decreases occurred across digestion, indicating reduced bioaccessibility of green tea polyphenols that may influence antioxidant and health effects.
References
Akbulut, A., Kara, Ş. M., & Özcan, A. (2020). Comparison of black, green, and white teas in terms of quality criteria, mineral contents, antioxidant, and antimicrobial activity. Academic Journal of Agriculture, 9(2), 279–288.
Albishi, T., John, J. A., Al-Khalifa, A. S., & Shahidi, F. (2013). Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. Journal of Functional Foods, 5(2), 590–600. https://doi.org/10.1016/j.jff.2012.11.019
Al-Ghafari, A. B., Shorbaji, A. M., Al-Sarori, L. A., Baduwailan, E. O., Basaar, A. A., Doghaither, H. A., Al-Marzouki, H. F., & Omar, U. M. (2016). Phenolic contents and antioxidant activities of green tea with and without lemon. Natural Science, 8(6), 247–255. https://doi.org/10.4236/ns.2016.86029
Annunziata, G., Maisto, M., Schisano, C., Ciampaglia, R., Daliu, P., Narciso, V., Tenore, G. C., & Novellino, E. (2018). Colon bioaccessibility and antioxidant activity of white, green and black tea polyphenols extract after in vitro simulated gastrointestinal digestion. Nutrients, 10, 1711. https://doi.org/10.3390/nu10111711
Cavlak, S., & Yağmur, C. (2016). Determination of total phenolic content and antioxidant activity of some tea bags. ÇÜ Journal of Science and Engineering, 34(4), 11–19.
Chen, G. L., Hu, K., Zhong, N. J., Guo, J., Gong, Y. S., Deng, X. T., Huang, Y. S., Chu, D. K., & Gao, Y. Q. (2013). Antioxidant capacities and total polyphenol content of nine commercially available tea juices measured by an in vitro digestion model. European Food Research and Technology, 236, 303–310.
Çomak Göçer, E. M., Ergin, F., & Küçükçetin, A. (2016). Viability of probiotic microorganisms in digestive system models. Academic Food, 14(2), 158–165.
Donlao, N., & Ogawa, Y. (2019). The influence of processing conditions on catechin, caffeine and chlorophyll contents of green tea (Camellia sinensis) leaves and infusions. LWT – Food Science and Technology, 116, 108567. https://doi.org/10.1016/j.lwt.2019.108567
Eruygur, N., Dincel, N. G. K., & Kutuk, N. (2018). Modeling of total phenolic contents in various tea samples by experimental design methods. Open Chemistry, 16(1), 738–744. https://doi.org/10.1515/chem-2018-0082
Governa, P., Manetti, F., Miraldi, E., & Biagi, M. (2022). Effects of in vitro simulated digestion on the antioxidant activity of different Camellia sinensis (L.) Kuntze leaves extracts. European Food Research and Technology, 248, 119–128. https://doi.org/10.1007/s00217-021-03864-1
Göksu Sürücü, C., Tolun, A., & Artık, N. (2024). Comparative study on phenolic compounds of green tea (Camellia sinensis L.) prepared by different brewing methods. Annals of the University “Dunărea de Jos” of Galați. Fascicle VI: Food Technology, 48, 9–23. https://doi.org/10.35219/foodtechnology.2024.1.01
Henning, S. M., Fajardo-Lira, C., Lee, H. W., Youssefian, A. A., Go, V. L. W., & Heber, D. (2003). Catechin content of 18 teas and a green tea extract supplement correlates with the antioxidant capacity. Nutrition and Cancer, 45(2), 226–235. https://doi.org/10.1207/S15327914NC4502_13
Laib, I., Kehal, F., Arris, M., Maameri, M. I., Lachlah, H., Bensouici, C., Mosbah, R., Houasnia, M., & Barkat, M. (2021). Effect of in vitro gastrointestinal digestion on phenolic compounds and the antioxidant activity of Camellia sinensis (L.) green tea from organic farming. Nutrition Clinique et Métabolisme, 35(3), 212–221. https://doi.org/10.1016/j.nupar.2020.12.003
Lorenzo, J. M., & Munekata, P. E. S. (2016). Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pacific Journal of Tropical Biomedicine, 6(8), 709–719. https://doi.org/10.1016/j.apjtb.2016.06.010
Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A. R., Marze, S., McClements, D. J., Ménard, O., Recio, I., Santos, C. N., Singh, R. P., Vegarud, G. E., Wickham, M. S. J., Weitschies, W., & Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food – an international consensus. Food & Function, 5(6), 1113–1124. https://doi.org/10.1039/c3fo60702J
Qin, W., Ketnawa, S., & Ogawa, Y. (2022). Effect of digestive enzymes and pH on variation of bioavailability of green tea during simulated in vitro gastrointestinal digestion. Food Science and Human Wellness, 11(3), 669–675. https://doi.org/10.1016/j.fshw.2021.12.024
Saklar, S., Ertaş, E., Özdemir, I. S., & Karadeniz, B. (2015). Effects of different brewing conditions on catechin content and sensory acceptance in Turkish green tea infusions. Journal of Food Science and Technology, 52(10), 6639–6646. https://doi.org/10.1007/s13197-015-1746-y
Shannon, E., Jaiswal, A. K., & Abu-Ghannam, N. (2017). Polyphenolic content and antioxidant capacity of white, green, black, and herbal teas: A kinetic study. Food Research, 2(1), 1–11. https://doi.org/10.26656/fr.2017.2(1).117
Shu, Y., Li, J., Yang, X., Dong, X., & Wang, X. (2019). Effect of particle size on the bioaccessibility of polyphenols and polysaccharides in green tea powder and its antioxidant activity after simulated human digestion. Journal of Food Science and Technology, 56(3), 1127–1133. https://doi.org/10.1007/s13197-019-03573-4
Singh, K., Srichairatanakool, S., Chewonarin, T., Brennan, C. S., Brennan, M. A., Klangpetch, W., & Utama-Ang, N. (2022). Manipulation of the phenolic quality of Assam green tea through thermal regulation and utilization of microwave and ultrasonic extraction techniques. Horticulturae, 8(4), 338. https://doi.org/10.3390/horticulturae8040338
Taga, M. S., Miller, E. E., & Pratt, D. E. (1984). Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists’ Society, 61(5), 928–931. https://doi.org/10.1007/BF02542169
Taş, S., Sarandol, E., Ziyanok, S., Aslan, K., & Dirican, M. (2005). Effects of green tea on serum paraoxonase/arylesterase activities in streptozotocin-induced diabetic rats. Nutrition Research, 25(12), 1061–1074. https://doi.org/10.1016/j.nutres.2005.10.001
Tenore, G. C., Campiglia, P., Giannetti, D., & Novellino, E. (2015). Simulated gastrointestinal digestion, intestinal permeation and plasma protein interaction of white, green and black tea polyphenols. Food Chemistry, 169, 320–326. https://doi.org/10.1016/j.foodchem.2014.08.006
Wu, Z., Teng, J., Huang, L., Xia, N., & Wei, B. (2015). Stability, antioxidant activity and in vitro bile acid-binding of green, black and dark tea polyphenols during simulated in vitro gastrointestinal digestion. RSC Advances, 5(112), 92089–92095. https://doi.org/10.1039/C5RA18784B
Zhang, L., Ho, C. T., Zhou, J., Santos, J. S., Armstrong, L., & Granato, D. (2019). Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1474–1495. https://doi.org/10.1111/1541-4337.12479
