Effects of a 60-day gluten-free chapatti intervention on hematologic and renal biomarkers in celiac disease: pre-post analysis
Main Article Content
Keywords
Celiac disease, Gluten-free chapatti, Hemoglobin, Hematocrit, Dietary intervention, Bio accessibility
Abstract
Celiac disease (CD) often coexists with anemia and biochemical abnormalities and requires a lifelong gluten-free (GF) diet to prevent adverse health effects. This study explores the changes in hematologic and biochemical markers during a 60-day GF chapatti intervention and characterizes the product’s composition. In a prospective, single-arm pre-post study (n = 130; 65 male, 65 female), participants consumed a GF chapatti formulated from corn, chickpea, and rice flour (40 %, 50 %, and 10 %). Venous blood was collected at baseline and follow-up visits (Days 0, 15, 30, 45, and 60). Primary endpoints included hemoglobin (Hb) and hematocrit (HCT); secondary endpoints included red-blood-cell indices, urea, creatinine (Cr), bilirubin fractions, ferritin, serum iron, TIBC, and sTfR. Single-arm pre-post blood glucose (BG) was measured under nonfasting conditions. Proximate analysis revealed that chickpea and corn flours provided higher protein (17.58% and 11.37%, respectively) and fiber (8.16% in corn) compared to rice and wheat. Posttreatment chapatti showed improved nutritional content (13% protein, 1.6% fiber). Volunteers exhibited gradual increases in weight and height. Hb levels were significantly high, and glucose levels were stabilized. Iron status recovered markedly: Ferritin and serum iron increased considerably in both sexes (p < 0.001), while TIBC and sTfR also rose (p < 0.001), indicating improved erythropoiesis. Inflammation declined: Both hs-CRP and AGP had a p-value of < 0.001. Kidney function improved (decline in urea and Cr). Liver markers (bilirubin, alkaline phosphatase (ALP), and SGPT-ALT) also showed favorable trends, indicating no adverse hepatic effects. A 60-day GF chapatti intervention was associated with improvements in anemia-related markers and no adverse trends in renal/hepatic function.
References
Altaf N., Quddoos M.Y., Mahmood S., Rehman M.A.U., Ullah T.S., Ainee A., ... Hussain A. 2022. Relationship of socioeconomic status with special reference to leucorrhoea: Socioeconomic status with leucorrhoea. PJHS. 203–208. https://doi.org/10.54393/pjhs.v3i07.420
Anderson B., Clark T., Lewis R. 2022. Metabolic adaptations and glucose homeostasis: A clinical perspective. J. Clin. Endocrinol. Metab. 19(3): 78–92.
Antiga E., Maglie R., Quintarelli L., Verdelli A., Bonciani D., Bonciolini V., Caproni M. 2019. Dermatitis herpetiformis: Novel perspectives. Front. Immunol. 10: 1290. https://doi.org/10.3389/fimmu.2019.01290
AOAC. 2016. Official Methods of Analysis. Association of Official Analytical Chemists. Inc., 15th Ed. Arlington, USA.
Asif M., Maan A.A., Nazir A., Khan, M.I.M., Khan, M.K.I. 2025. Effect of chickpea on the physicochemical, nutritional, antioxidant, and organoleptic characterization of corn extrudates. J. Sci. Food Agric. 105(3): 2059–2067. https://doi.org/10.1002/jsfa.13981
Baidani A., Zeroual A., Abderemane B.A., Mitache M., Aboutayeb R., Houasli C., Idrissi, O. 2024. Genetic variability for protein, zinc, and iron content in a chickpea collection under no-tillage system conditions. Genet. Resour. Crop Evol. 1–12. https://doi.org/10.1007/s10722-024-02177-y
Ben-Ami T., Trotskovsk A., Topf-Olivestone C., Kori M. 2024. Iron deficiency without anemia in children with newly diagnosed celiac disease: 1-year follow-up of ferritin levels, with and without iron supplementation. Eur. J. Pediatr. 183(11): 4705–4710. https://doi.org/10.1007/s00431-024-05721-1
Caio G., Volta U., Sapone A., Leffler D.A., De Giorgio R., Catassi C., Fasano A. 2019. Celiac disease: A comprehensive current review. BMC Med. 17(1): 142. https://doi.org/10.1186/s12916-019-1380-z
Cappellini M.D., Musallam K.M., Taher A.T. 2020. Iron deficiency anaemia revisited. J. Intern. Med. 287(2): 153–170. https://doi.org/10.1111/joim.13004
Chaudhary N., Dangi P., Mishra M.L., Kumar, V. 2021. Wheat: Contribution to healthy diet and health. In Handbook of Cereals, Pulses, Roots, and Tubers (pp. 3–34). CRC Press. https://doi.org/10.1201/9781003155508-2
Cubadda F., Jackson B.P., Cottingham K.L., Van Der Voet H., Clemens S. 2022. Human exposure to dietary inorganic arsenic and other arsenic species: State of knowledge, gaps and uncertainties. Sci. Total Environ. 821: 153280. https://doi.org/10.1016/j.scitotenv.2022.153280
DeLoughery T.G., Jackson C.S., Ko C.W., Rockey D.C. 2024. AGA clinical practice update on management of iron deficiency anemia: Expert review. Clin. Gastroenterol. Hepatol. 22(8): 1575–1583. https://doi.org/10.1016/j.cgh.2024.03.046
Dorosti M., Heidarloo A.J., Bakhshimoghaddam F., Alizadeh, M. 2020. Whole-grain consumption and its effects on hepatic steatosis and liver enzymes in patients with non-alcoholic fatty liver disease: A randomised controlled clinical trial. Br. J. Nutr. 123(3): 328–336. https://doi.org/10.1017/S0007114519002769
Giménez-Bastida J.A. and Pihlsgård M. 2020. Corn and its role in gluten-related disorders. Nutrients. 12(9): 2671. https://doi.org/10.3390/nu12092671
Hameed R., Quddoos M.Y., Mahmood S., Ullah T.S., Ainee A., Rafique A., Batool, R. 2024. Open Access Original Article. IJFS. 36(1): 80–91. https://doi.org/10.15586/ijfs.v36i1.2462
Iqbal, M. A., Murtaza, M. A., Sameen, A., Hafiz, I., Quddoos, M. Y., Sabir, A., & Alsulami, T. (2025). Effects of probiotic cultures on bioactive peptides, composition, and sensory traits of yogurt. Quality Assurance and Safety of Crops & Foods, 17(3), 88-107.
Katyal M., Thakur S., Singh N., Khatkar B.S., Shishodia S.K. 2024. A review of wheat chapatti: Quality attributes and shelf stability parameters. Food Chemistry Advances. 4: 100736. https://doi.org/10.1016/j.focha.2024.100736
Khadija U., Mahmood S., Ainee A., Quddoos M.Y., Ahmad H., Khadija A., Hussain A. 2022. Nutritional health status: Association of stunted and wasted children and their mothers. BMC Pediatr. 22(1): 255. https://doi.org/10.1186/s12887-022-03309-y
Ko YA, Rohner F, Wirth JP, et al. Evaluation of inflammation-adjustment methods to assess iron deficiency using longitudinal data from human challenge trials. PLOS Glob Public Health. 2024;3(9): e0003964. https://doi.org/10.1371/journal.pgph.0003964
Kulkarni D.H. and Newberry, R.D. (2019). Intestinal macromolecular transport supporting adaptive immunity. CMGH. 7(4): 729–737. https://doi.org/10.1016/j.jcmgh.2019.01.003
Kumar V., Kumar A., Singh M.K., Dhyani P., Mishra H., Rai, D.C. 2024. Bioactive metabolites identification of the foxnut and broken millet-based nutritional bar using HR-MS. Food Chem. Mol. Sci. 9: 100214. https://doi.org/10.1016/j.fochms.2024.100214
Lebwohl B., Sanders D.S., Green P.H.R. 2018. Celiac disease. The Lancet. 391(10115): 70–81. https://doi.org/10.1016/S0140-6736(17)31796-8
Lee A.R., Wolf R.L., Lebwohl B., Ciaccio E.J., Green P.H.R. 2019. Persistent economic burden of the gluten-free diet. Nutrients 11(2): 399. https://doi.org/10.3390/nu11020399
Luo H., Geng J., Zeiler M., Nieckula E., Sandalinas F., Williams A., ... Suchdev P.S. 2023. A practical guide to adjust micronutrient biomarkers for inflammation using the BRINDA method. J. Nutr. 153(4): 1265–1272. https://doi.org/10.1016/j.tjnut.2023.02.016
Madurapperumage A., Tang L., Thavarajah P., Bridges W., Shipe E., Vandemark G., Thavarajah D. 2021. Chickpea (Cicer arietinum L.) as a source of essential fatty acids–A biofortification approach. Front. Plant Sci. 12: 734980. https://doi.org/10.3389/fpls.2021.734980
Marild K., Söderling J., Bozorg S.R., Everhov Å.H., Lebwohl B., Green P.H., ... Ludvigsson J.F. 2020. Costs and use of health care in patients with celiac disease: A population-based longitudinal study. Am. J. Gastroenterol. | 115(8): 1253–1263. https://doi.org/10.14309/ajg.0000000000000652
Mazzola A.M., Zammarchi I., Valerii M.C., Spisni E., Saracino I.M., Lanzarotto F., Ricci C. 2024. Gluten-free diet and other celiac disease therapies: Current understanding and emerging strategies. Nutrients. 16(7): 1006. https://doi.org/10.3390/nu16071006
Mugabe D, Frieszell CM, Warburton ML et al. 2023. Kabuli chickpea seed quality diversity and preliminary genome-wide association study identifies markers and potential candidate genes. Agrosyst. Geosci. Environ. 6: e20437. https://doi.org/10.1002/agg2.20437
Nieto-Salazar M.A., Ordóñez, K.N.A., Carcamo Z.D.S., Cristina A., Ordóñez A., Saldana E.A., ... Garza12, D.A.D.L. 2023. Neurological dysfunction associated with vitamin deficiencies: A narrative review. Open Access J. Neurol. Neurosurg. 18: 1–9. https://doi.org/10.19080/OAJNN.2023.18.555979
Nishat, Z., Quddoos, M. Y., Shahzadi, N., Ameer, K., Ahmed, I. A. M., Yaqub, S., & Aljobair, M. O. (2024). Probing the physicochemical impact of musk melon seed oil on mayonnaise. Italian Journal of Food Science/Rivista Italiana di Scienza degli Alimenti, 36(2).
Patel R. and Mehta P. 2022. Gender differences in childhood growth: A longitudinal study. Int. J. Pediatr. Res. 14(1): 78–91.
Pop A.V., Popa S.L., Dumitrascu D.L. 2024. Extra-digestive manifestations of celiac disease. Med. Pharm. Rep. 97(3): 249. https://doi.org/10.15386/mpr-2776
Purewal S.S., Kaur P., Salar R.K. (Eds.). 2023. Chickpea and Cowpea: Nutritional Profile, Processing, Health Prospects and Commercial Uses. CRC Press
Quddoos M. Y., Mahmood S., Yaqoob M., Murtaza M.A., Zahra S.M., ud Din G.M., ... Mustafa S. 2022. The effects of natural and synthetic calcium utilization on quality parameters of cookies. Appl. Food Res. 2(1): 100093. https://doi.org/10.1016/j.afres.2022.100093
Rao A.S., Hegde S., Pacioretty L.M., DeBenedetto J., Babish J.G. 2020. Nigella sativa and trigonella foenum-graecum supplemented chapattis safely improve HbA1c, body weight, waist circumference, blood lipids, and fatty liver in overweight and diabetic subjects: A twelve-week safety and efficacy study. J. Med. Food. 23(9): 905–919. https://doi.org/10.1089/jmf.2020.0075
Rashid M. and Rashid H. 2019. Coeliac disease in Pakistan: A bibliographic review of current research status. JPMA. 69(12): 1883–1888. https://doi.org/10.5455/JPMA.286805
Rohr M, Brandenburg V, Brunner-La Rocca HP. 2023. How to diagnose iron deficiency in chronic disease: Current methods and potential markers. Eur. J. Med. Res. 28(1): 15. https://doi.org/10.1186/s40001-022-00922-6
Sachanarula, S., Chantarasinlapin, P., & Adisakwattana, S. (2022). Substituting whole wheat flour with Pigeon pea (Cajanus cajan) flour in Chapati: Effect on nutritional characteristics, color profiles, and In Vitro starch and protein digestion. Foods, 11(20), 3157.
Samineni S, Mahendrakar MD, Hotti A et al. 2022. Impact of heat and drought stresses on grain nutrient content in chickpea: Genome-wide marker-trait associations for protein, Fe and Zn. Environ. Exp. Bot. 194: 104688. https://doi.org/10.1016/j.envexpbot.2021.104688
Serrapica F., Masucci F., Romano R., Napolitano F., Sabia E., Aiello A., Di Francia A. 2020. Effects of chickpea in substitution of soybean meal on milk production, blood profile and reproductive response of primiparous buffaloes in early lactation. Animals. 10(3): 515. https://doi.org/10.3390/ani10030515
Shakpo I.O., Ajala A.O., Oludunsin A.O. 2020. Nutrient composition and microbiological status of nutrient-dense flour produced from indigenous crops. JDC. 4(3): 1–7. https://doi.org/10.33425/2639-9326.1075
Sharma S, Lavale SA, Nimje C, Singh S. 2021. Characterization and identification of annual wild Cicer species for seed protein and mineral concentrations for chickpea improvement. Crop Sci. 61: 305–319. https://doi.org/10.1002/csc2.20413
Sharma N., Bhatia S., Chunduri V., Kaur S., Sharma S., Kapoor P., Garg M. 2020. Pathogenesis of celiac disease and other gluten-related disorders in wheat and strategies for mitigating them. Front. Nutr. 7: 6. https://doi.org/10.3389/fnut.2020.00006
Sollid L.M., Qiao S.W., Anderson R.P., Gianfrani C., Koning F. 2020. Nomenclature and listing of celiac disease-relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics. 72(1–2): 85–92. https://doi.org/10.1007/s00251-019-01141-w
Srungarapu R, Mohammad LA, Mahendrakar MD et al. 2022. Genetic variation for grain protein, Fe and Zn content traits in chickpea reference set. J. Food. Compos. Anal. 114: 104774.
https://doi.org/10.1016/j.jfca.2022.104774
Tahir, H., Ahmed, W., Siddique, I., Anees-Ur-Rehman, M., Tahir, A., Majeed, M. S., & Mubashir, R. (2023). Assessment of Antioxidant Activity of Stigma maydis Extract/Corn Silk Extract and Exploring its Efficacy Against Hyperglycemia in Diabetic Rats. Tropical Journal of Natural Product Research, 7(11).
Torra M., Belorio M., Ayuso M., Carocho M., Ferreira I.C., Barros L., Gómez M. 2021. Chickpea and chestnut flours as non-gluten alternatives in cookies. Foods. 10(5): 911. https://doi.org/10.3390/foods10050911
Vinod B.R., Asrey R., Rudra S.G., Urhe S.B., Mishra S. 2023. Chickpea as a promising ingredient substitute in gluten-free bread making: An overview of technological and nutritional benefits. Food Chem. Adv. 3: 100473. https://doi.org/10.1016/j.focha.2023.100473
Vivar-Quintana A.M., Absi Y., Hernández-Jiménez M., Revilla I. 2023. Nutritional value, mineral composition, fatty acid profile and bioactive compounds of commercial plant-based gluten-free flours. Appl. Sci. 13(4): 2309. https://doi.org/10.3390/app13042309
Wallace T.C., Murray R., Zelman K.M. 2016. The nutritional value and health benefits of chickpeas and hummus. Nutrients. 8(12): 766. https://doi.org/10.3390/nu8120766
Wang A., Yeung L.F., Ríos Burrows N., Rose C.E., Fazili Z., Pfeiffer C.M., Crider K.S. 2022. Reduced kidney function is associated with increasing red blood cell folate concentration and changes in folate form distributions (NHANES 2011–2018). Nutrients. 14(5): 1054. https://doi.org/10.3390/nu14051054
World Health Organization. 2020. WHO guideline on use of ferritin concentrations to assess iron status in populations. World Health Organization.
World Health Organization. 2020. WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations. Geneva: WHO.
Zis P. and Hadjivassiliou M. 2019. Treatment of neurological manifestations of gluten sensitivity and coeliac disease. CTON. 21: 1–10.
Zubair M., Ahmed A., Afzaal M., Saeed F., Faisal Z., Asghar A. Asres D.T. 2024. Effect of pomegranate peel powder‐infused multigrain chapatti on diabetes prevention: A randomized clinical trial. FSCN. 12(7): 4879–4892. https://doi.org/10.1002/fsn3.4134
Anderson G.H. and Ying M. 2022. The metabolic benefits of pulse consumption: A review. Nutr. Rev. 80(6): 1425–1440.
Mariotti F. 2017. Legume protein digestion and metabolism. In Vegetarian and Plant-Based Diets in Health and Disease Prevention (pp. 427–444). Academic Press.
Zubia, M.; Mahmood, S.; Nadeem, M.; Quddoos, M. Y.; Ameer, K.; Al-Nouri, D. M.; Mohamed Ahmed, I. A. (2025). Evaluation of the physicochemical, bioavailability, nanoscale, and FTIR properties of eggshell, chicken, and cattle bones powders for muffin preparation. Italian Journal of Food Science, 37(3), 370-388. https://doi.org/10.15586/ijfs.v37i3.2782
Zerlasht, M., Javaria, S., Quddoos, M. Y., Arshad, R., Yaqub, S., Khalid, M. Z., & Rafique, H. (2024). The impact of fenugreek, black cumin, and garlic on dough rheology, bread quality, antimicrobial activity, and microstructural analysis using a scanning electron microscope. Italian Journal of Food Science, 36(4), 26
