Umbelliferone ameliorates acrylamide-induced brain damage by attenuating oxidative stress, inflammation, and apoptosis and restoring Nrf2/HO-1 in mice

Main Article Content

Abdulmohsen Algefare
Manal Alfwuaires

Keywords

acrylamide; brain injury; inflammation; oxidative stress; Nrf2; umbelliferone

Abstract

Umbelliferone (UF), a natural coumarin derivative, possesses antioxidant and anti-inflammatory actions. Acrylamide (ACR) is a known neurotoxic compound that induces oxidative stress, inflammation, and apoptotic cell death, contributing to neurotoxic damage. This study aimed to assess the potential neuroprotective effects of UF against ACR-induced brain damage in mice. Mice received UF (25 or 50 mg/kg, orally) for 14 days, followed by ACR (50 mg/kg, intraperitoneally) for the last 11 days. ACR exposure significantly increased malondialdehyde and protein carbonyl contents and decreased reduced glutathione levels and superoxide dismutase and catalase activities in the brain. Hematoxylin and eosin staining assessments revealed pronounced histological alterations in the brains of ACR-injected animals, indicating severe neurotoxic damage. The brains of ACR-administrated animals also showed increased nuclear factor-kappa B (NF-κB) p65 expression and elevated tumor necrosis factor-alpha and interleukin-1β levels. ACR exposure resulted in significantly increased Bax and caspase-3 levels and decreased Bcl-2 levels in the brain. Overall, UF treatment ameliorated histopathological changes, mitigated oxidative stress, enhanced cellular antioxidants, suppressed NF-κB p65 and inflammatory mediators, modulated apoptotic markers (Bcl-2, Bax, and caspase-3), and restored Nrf2/HO-1 in the brain. In conclusion, UF exerts significant neuroprotective effects against ACR-induced brain injury by modulating Nrf2/HO-1 signaling and mitigating inflammation, oxidative stress, and apoptosis. These findings suggest that UF may represent promising neuroprotective effects against ACR-induced neurotoxicity and potentially other brain injuries driven by oxidative stress and inflammation.

Abstract 27 | PDF Downloads 10 XML Downloads 0 HTML Downloads 0

References

Aebi, H. (1984). Catalase in vitro. In L. Packer (Ed.), Methods in enzymology (Vol. 105, pp. 121–126). Academic Press. https://doi.org/10.1016/S0076-6879(84)05016-3
Ageena, S. A., Bakr, A. G., Mokhlis, H. A., & Abd-Ellah, M. F. (2025). Renoprotective effects of apocynin and/or umbelliferone against acrylamide-induced acute kidney injury in rats: Role of the NLRP3 inflammasome and Nrf-2/HO-1 signaling pathways. Naunyn-Schmiedeberg's Archives of Pharmacology, 398(4), 569–580. https://doi.org/10.1007/s00210-024-03271-9
Ahmed, W. E., Almutairi, A. A., Almujaydil, M. S., Algonaiman, R., Mousa, H. M., & Alhomaid, R. M. (2025). Nutraceutical potential of parsley (Petroselinum crispum Mill.): Comprehensive overview. Italian Journal of Food Science / Rivista Italiana di Scienza degli Alimenti, 37(1). https://doi.org/10.15586/ijfs.v37i1.2806
Alotaibi, B. S., Saleem, U., Farrukh, M., Waseem, S., Chauhdary, Z., Alsharif, I., Alqahtani, W. S., Alanzi, A. R., BinMowyna, M. N., & Shah, M. A. (2024). Chamuangone-rich rice bran oil ameliorates neurodegeneration in AlCl₃/D-galactose model via modulation of behavioral, biochemical, and neurochemical parameters. Italian Journal of Food Science / Rivista Italiana di Scienza degli Alimenti, 36(3). https://doi.org/10.15586/ijfs.v36i3.2643
Althunibat, O. Y., Abduh, M. S., Abukhalil, M. H., Aladaileh, S. H., Hanieh, H., & Mahmoud, A. M. (2022). Umbelliferone prevents isoproterenol-induced myocardial injury by upregulating Nrf2/HO-1 signaling, and attenuating oxidative stress, inflammation, and cell death in rats. Biomedicine & Pharmacotherapy, 149, 112900. https://doi.org/10.1016/j.biopha.2022.112900
Amirshahrokhi, K., & Abzirakan, A. (2022). Carvedilol attenuates acrylamide-induced brain damage through inhibition of oxidative, inflammatory, and apoptotic mediators. Iranian Journal of Basic Medical Sciences, 25(1), 60–67.
Bancroft, J. D., & Gamble, M. (2008). Theory and practice of histological techniques (6th ed.). Elsevier Health Sciences.
Bin-Jumah, M. N., Al-Huqail, A. A., Abdelnaeim, N., Kamel, M., Fouda, M. M., Abulmeaty, M. M., Saadeldin, I. M., & Abdel-Daim, M. M. (2021). Potential protective effects of Spirulina platensis on liver, kidney, and brain acrylamide toxicity in rats. Environmental Science and Pollution Research, 28(22), 26653–26663. https://doi.org/10.1007/s11356-021-12422-x
Catalá, A., & Díaz, M. (2016). Impact of lipid peroxidation on the physiology and pathophysiology of cell membranes. In Frontiers Media SA (p. 423). https://doi.org/10.3389/978-2-88945-082-4
Cota, P., Saha, S., Tewari, S., Sasikumar, A., Saran, M. Y., Senthilkumar, S., & Mohideen, S. S. (2022). Acrylamide: A neurotoxin and a hazardous waste. In Hazardous waste management. IntechOpen. https://doi.org/10.5772/intechopen.102607
Cruz, L. F., de Figueiredo, G. F., Pedro, L. P., Amorin, Y. M., Andrade, J. T., Passos, T. F., Rodrigues, F. F., Souza, I. L. A., Gonçalves, T. P. R., & dos Santos Lima, L. A. R. (2020). Umbelliferone (7-hydroxycoumarin): A non-toxic antidiarrheal and antiulcerogenic coumarin. Biomedicine & Pharmacotherapy, 129, 110432. https://doi.org/10.1016/j.biopha.2020.110432
Dash, U. C., Bhol, N. K., Swain, S. K., Samal, R. R., Nayak, P. K., Raina, V., Panda, S. K., Kerry, R. G., Duttaroy, A. K., & Jena, A. B. (2024). Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharmaceutica Sinica B. Advance online publication. https://doi.org/10.1016/j.apsb.2024.10.004
Edres, H. A., Taha, N. M., Lebda, M. A., & Elfeky, M. S. (2021). The potential neuroprotective effect of allicin and melatonin in acrylamide-induced brain damage in rats. Environmental Science and Pollution Research, 28(47), 58768–58780. https://doi.org/10.1007/s11356-021-14800-x
Ekuban, F. A., Zong, C., Takikawa, M., Morikawa, K., Sakurai, T., Ichihara, S., Itoh, K., Yamamoto, M., Ohsako, S., & Ichihara, G. (2021). Genetic ablation of Nrf2 exacerbates neurotoxic effects of acrylamide in mice. Toxicology, 456, 152785. https://doi.org/10.1016/j.tox.2021.152785
El-Shehawi, A. M., Sayed, S., Hassan, M. M., Al-Otaibi, S., Althobaiti, F., Elseehy, M. M., & Soliman, M. (2022). Taify pomegranate juice (TPJ) abrogates acrylamide-induced oxidative stress through the regulation of antioxidant activity, inflammation, and apoptosis-associated genes. Frontiers in Veterinary Science, 9, 833605. https://doi.org/10.3389/fvets.2022.833605
Erkekoglu, P., Baydar, T., 2014. Acrylamide neurotoxicity. Nutr. Neurosci. 17: 49-57. https://doi.org/10.1179/1476830513Y.0000000065
Exon, J. (2006). A review of the toxicology of acrylamide. Journal of Toxicology and Environmental Health, Part B, 9(5), 397–412. https://doi.org/10.1080/10937400600681430
Fan, M., Xu, X., Lang, W., Wang, W., Wang, X., Xin, A., Zhou, F., Ding, Z., Ye, X., & Zhu, B. (2023). Toxicity, formation, contamination, determination and mitigation of acrylamide in thermally processed plant-based foods and herbal medicines: A review. Ecotoxicology and Environmental Safety, 260, 115059. https://doi.org/10.1016/j.ecoenv.2023.115059
Germoush, M. O., Othman, S. I., Al-Qaraawi, M. A., Al-Harbi, H. M., Hussein, O. E., Al-Basher, G., Alotaibi, M. F., Elgebaly, H. A., Sandhu, M. A., & Allam, A. A. (2018a). Umbelliferone prevents oxidative stress, inflammation and hematological alterations, and modulates glutamate-nitric oxide-cGMP signaling in hyperammonemic rats. Biomedicine & Pharmacotherapy, 102, 392–402. https://doi.org/10.1016/j.biopha.2018.03.104
Germoush, M. O., Othman, S. I., Al-Qaraawi, M. A., Al-Harbi, H. M., Hussein, O. E., Al-Basher, G., Alotaibi, M. F., Elgebaly, H. A., Sandhu, M. A., Allam, A. A., & Mahmoud, A. M. (2018b). Umbelliferone prevents oxidative stress, inflammation and hematological alterations, and modulates glutamate-nitric oxide-cGMP signaling in hyperammonemic rats. Biomedicine & Pharmacotherapy, 102, 392–402. https://doi.org/10.1016/j.biopha.2018.03.104
Griffith, O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 106(1), 207–212. https://doi.org/10.1016/0003-2697(80)90139-6
Guo, J., Cao, X., Hu, X., Li, S., & Wang, J. (2020). The anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacology and Toxicology, 21, Article 51. https://doi.org/10.1186/s40360-020-00440-3
Guo, Q., Jin, Y., Chen, X., Ye, X., Shen, X., Lin, M., Zeng, C., Zhou, T., & Zhang, J. (2024). NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduction and Targeted Therapy, 9, 53. https://doi.org/10.1038/s41392-024-01757-9
Gür, F., Cengiz, M., Gür, B., Cengiz, O., Sarıçiçek, O., & Ayhancı, A. (2023). Therapeutic role of boron on acrylamide-induced nephrotoxicity, cardiotoxicity, neurotoxicity, and testicular toxicity in rats: Effects on Nrf2/Keap-1 signaling pathway and oxidative stress. Journal of Trace Elements in Medicine and Biology, 80, 127274. https://doi.org/10.1016/j.jtemb.2023.127274
Hall, E. D., Wang, J. A., Bosken, J. M., & Singh, I. N. (2016). Lipid peroxidation in brain or spinal cord mitochondria after injury. Journal of Bioenergetics and Biomembranes, 48(2), 169–174. https://doi.org/10.1007/s10863-015-9600-5
Hassanein, E. H. M., Sayed, A. M., Hussein, O. E., & Mahmoud, A. M. (2020). Coumarins as modulators of the Keap1/Nrf2/ARE signaling pathway. Oxidative Medicine and Cellular Longevity, 2020, Article 1675957. https://doi.org/10.1155/2020/1675957
He, Y., Tan, D., Mi, Y., Zhou, Q., & Ji, S. (2017). Epigallocatechin-3-gallate attenuates cerebral cortex damage and promotes brain regeneration in acrylamide-treated rats. Food & Function, 8(6), 2275–2282. https://doi.org/10.1039/C6FO01823H
Hindam, M. O., Sayed, R. H., Skalicka‐Woźniak, K., Budzyńska, B., & El Sayed, N. S. (2020). Xanthotoxin and umbelliferone attenuate cognitive dysfunction in a streptozotocin‐induced rat model of sporadic Alzheimer's disease: The role of JAK2/STAT3 and Nrf2/HO‐1 signalling pathway modulation. Phytotherapy Research, 34(10), 2351–2365. https://doi.org/10.1002/ptr.6686
Ibrahim, D. S., & Shahen, E. M. (2023). Effect of royal jelly on acrylamide-induced neurotoxicity in rats. Journal of Chemical Neuroanatomy, 134, 102358. https://doi.org/10.1016/j.jchemneu.2023.102358
Koo, J. W., Russo, S. J., Ferguson, D., Nestler, E. J., & Duman, R. S. (2010). Nuclear factor-κB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proceedings of the National Academy of Sciences, 107(9), 2669–2674. https://doi.org/10.1073/pnas.0910658107
Koszucka, A., Nowak, A., Nowak, I., & Motyl, I. (2020). Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Critical Reviews in Food Science and Nutrition, 60(10), 1677–1692. https://doi.org/10.1080/10408398.2019.1588222
Lakshmi, D., Gopinath, K., Jayanthy, G., Anjum, S., Prakash, D., & Sudhandiran, G. (2012). Ameliorating effect of fish oil on acrylamide induced oxidative stress and neuronal apoptosis in cerebral cortex. Neurochemical Research, 37(9), 1859–1867. https://doi.org/10.1007/s11064-012-0794-1
Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A.-G., Ahn, B.-W., Shaltiel, S., & Stadtman, E. R. (1990). Determination of carbonyl content in oxidatively modified proteins. In Methods in enzymology (Vol. 186, pp. 464–478). Elsevier. https://doi.org/10.1016/0076-6879(90)86141-H
Li, D., & Ellis, E. M. (2012). Inducible protection of human astrocytoma 1321N1 cells against hydrogen peroxide and aldehyde toxicity by 7-hydroxycoumarin is associated with the upregulation of aldo-keto reductases. Neurotoxicology, 33(6), 1368–1374. https://doi.org/10.1016/j.neuro.2012.08.015
Li, S.-X., Cui, N., Zhang, C.-L., Zhao, X.-L., Yu, S.-F., & Xie, K.-Q. (2006). Effect of subchronic exposure to acrylamide induced on the expression of bcl-2, bax and caspase-3 in the rat nervous system. Toxicology, 217(1), 46–53. https://doi.org/10.1016/j.tox.2005.08.018
Liang, S., Chen, Z., Li, H., Cang, Z., Yin, K., Wu, M., & Luo, S. (2021). Neuroprotective effect of umbelliferone against cerebral ischemia/reperfusion induced neurological deficits: In-vivo and in-silico studies. Journal of Biomolecular Structure and Dynamics, 39(14), 4715–4725. https://doi.org/10.1080/07391102.2020.1780153
Liu, Y., Zhang, X., Yan, D., Wang, Y., Wang, N., Liu, Y., Tan, A., Chen, X., & Yan, H. (2020). Chronic acrylamide exposure induced glia cell activation, NLRP3 inflammasome upregulation and cognitive impairment. Toxicology and Applied Pharmacology, 393, 114949. https://doi.org/10.1016/j.taap.2020.114949
Liu, Z., Song, G., Zou, C., Liu, G., Wu, W., Yuan, T., & Liu, X. (2015). Acrylamide induces mitochondrial dysfunction and apoptosis in BV-2 microglial cells. Free Radical Biology and Medicine, 84, 42–53. https://doi.org/10.1016/j.freeradbiomed.2015.03.013
LoPachin, R., Ross, J., Reid, M. L., Das, S., Mansukhani, S., & Lehning, E. (2002). Neurological evaluation of toxic axonopathies in rats: Acrylamide and 2,5-hexanedione. Neurotoxicology, 23(1), 95–110. https://doi.org/10.1016/S0161-813X(02)00003-7
LoPachin, R. M. (2005). Acrylamide neurotoxicity: Neurological, morphological and molecular endpoints in animal models. In Chemistry and safety of acrylamide in food (pp. 21–37). https://doi.org/10.1007/0-387-24980-X_2
Ma, Q. (2013). Role of Nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology, 53, 401–426. https://doi.org/10.1146/annurev-pharmtox-011112-140320
Mahmoud, A. M., Germoush, M. O., Alotaibi, M. F., & Hussein, O. E. (2017). Possible involvement of Nrf2 and PPARγ up-regulation in the protective effect of umbelliferone against cyclophosphamide-induced hepatotoxicity. Biomedicine & Pharmacotherapy, 86, 297–306. https://doi.org/10.1016/j.biopha.2016.12.047
Mahmoud, A. M., Hozayen, W. G., Hasan, I. H., Shaban, E., & Bin-Jumah, M. (2019). Umbelliferone ameliorates CCl₄-induced liver fibrosis in rats by upregulating PPARγ and attenuating oxidative stress, inflammation, and TGF-β1/Smad3 signaling. Inflammation, 42(3), 1103–1116. https://doi.org/10.1007/s10753-019-00973-8
Mattson, M., & Meffert, M. (2006). Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death & Differentiation, 13(5), 852–860. https://doi.org/10.1038/sj.cdd.4401837
Mazimba, O. (2017). Umbelliferone: Sources, chemistry and bioactivities review. Bulletin of Faculty of Pharmacy, Cairo University, 55, 223–232. https://doi.org/10.1016/j.bfopcu.2017.05.001
Mazur, A., Fangman, M., Ashouri, R., Arcenas, A., & Doré, S. (2021). Nrf2 as a therapeutic target in ischemic stroke. Expert Opinion on Therapeutic Targets, 25(2), 163–166. https://doi.org/10.1080/14728222.2021.1890716
Mehri, S., Karami, H. V., Hassani, F. V., & Hosseinzadeh, H. (2014). Chrysin reduced acrylamide-induced neurotoxicity in both in vitro and in vivo assessments. Iranian Biomedical Journal, 18(2), 101.
Ngo, V., & Duennwald, M. L. (2022). Nrf2 and oxidative stress: A general overview of mechanisms and implications in human disease. Antioxidants, 11(12), 2345. https://doi.org/10.3390/antiox11122345
Nissanka, N., & Moraes, C. T. (2018). Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Letters, 592(5), 728–742. https://doi.org/10.1002/1873-3468.12956
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3
Olufunmilayo, E. O., Gerke-Duncan, M. B., & Holsinger, R. D. (2023). Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants, 12(2), 517. https://doi.org/10.3390/antiox12020517
Poh Loh, K., Hong Huang, S., De Silva, R., Tan, B. K. H., & Zhun Zhu, Y. (2006). Oxidative stress: Apoptosis in neuronal injury. Current Alzheimer Research, 3(4), 327–337. https://doi.org/10.2174/156720506778249515
Qin, T., Fang, F., Song, M., Li, R., Ma, Z., & Ma, S. (2017). Umbelliferone reverses depression-like behavior in chronic unpredictable mild stress-induced rats by attenuating neuronal apoptosis via regulating ROCK/Akt pathway. Behavioural Brain Research, 317, 147–156. https://doi.org/10.1016/j.bbr.2016.09.039
Rajeh, N. A. (2024). Mechanistic progression of acrylamide neurotoxicity linked to neurodegeneration and mitigation strategies. Discover Applied Sciences, 6, 181. https://doi.org/10.1007/s42452-024-05850-0
Rao, V. K., Carlson, E. A., & Yan, S. S. (2014). Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842(8), 1267–1272. https://doi.org/10.1016/j.bbadis.2013.09.003
Rifai, L., & Saleh, F. A. (2020). A review on acrylamide in food: Occurrence, toxicity, and mitigation strategies. International Journal of Toxicology, 39(2), 93–102. https://doi.org/10.1177/1091581820902405
Saha, S., Buttari, B., Panieri, E., Profumo, E., & Saso, L. (2020). An overview of Nrf2 signaling pathway and its role in inflammation. Molecules, 25(22), 5474. https://doi.org/10.3390/molecules25225474
Samtiya, M., Aluko, R. E., Dhewa, T., & Moreno-Rojas, J. M. (2021). Potential health benefits of plant food-derived bioactive components: An overview. Foods, 10(4), 839. https://doi.org/10.3390/foods10040839
Santhanasabapathy, R., Vasudevan, S., Anupriya, K., Pabitha, R., & Sudhandiran, G. (2015). Farnesol quells oxidative stress, reactive gliosis and inflammation during acrylamide-induced neurotoxicity: Behavioral and biochemical evidence. Neuroscience, 308, 212–227. https://doi.org/10.1016/j.neuroscience.2015.08.067
Semla, M., Goc, Z., Martiniaková, M., Omelka, R., & Formicki, G. (2017). Acrylamide: A common food toxin related to physiological functions and health. Physiological Research, 66, 205. https://doi.org/10.33549/physiolres.933381
Seong, S. H., Ali, M. Y., Jung, H. A., & Choi, J. S. (2019). Umbelliferone derivatives exert neuroprotective effects by inhibiting monoamine oxidase A, self-amyloidβ aggregation, and lipid peroxidation. Bioorganic Chemistry, 92, 103293. https://doi.org/10.1016/j.bioorg.2019.103293
Sharma, C., & Kang, S. C. (2020). Garcinol pacifies acrylamide induced cognitive impairments, neuroinflammation and neuronal apoptosis by modulating GSK signaling and activation of pCREB by regulating cathepsin B in the brain of zebrafish larvae. Food and Chemical Toxicology, 138, 111246. https://doi.org/10.1016/j.fct.2020.111246
Shih, R.-H., Wang, C.-Y., & Yang, C.-M. (2015). NF-kappaB signaling pathways in neurological inflammation: A mini review. Frontiers in Molecular Neuroscience, 8, 77. https://doi.org/10.3389/fnmol.2015.00077
Spitz, D. R., & Oberley, L. W. (1989). An assay for superoxide dismutase activity in mammalian tissue homogenates. Analytical Biochemistry, 179, 8–18. https://doi.org/10.1016/0003-2697(89)90192-9
Subramaniam, S. R., & Ellis, E. M. (2013). Neuroprotective effects of umbelliferone and esculetin in a mouse model of Parkinson's disease. Journal of Neuroscience Research, 91(3), 453–461. https://doi.org/10.1002/jnr.23164
Sui, X., Yang, J., Zhang, G., Yuan, X., Li, W., Long, J., Luo, Y., Li, Y., & Wang, Y. (2020). NLRP3 inflammasome inhibition attenuates subacute neurotoxicity induced by acrylamide in vitro and in vivo. Toxicology, 432, 152392. https://doi.org/10.1016/j.tox.2020.152392
Sun, G., Wang, X., Li, T., Qu, S., & Sun, J. (2018). Taurine attenuates acrylamide-induced apoptosis via a PI3K/AKT-dependent manner. Human & Experimental Toxicology, 37(12), 1249–1257. https://doi.org/10.1177/0960327118765335
Tonelli, C., Chio, I. I. C., & Tuveson, D. A. (2018). Transcriptional regulation by Nrf2. Antioxidants & Redox Signaling, 29(17), 1727–1745. https://doi.org/10.1089/ars.2017.7342
Wang, L., Zhang, X., Xiong, X., Zhu, H., Chen, R., Zhang, S., Chen, G., & Jian, Z. (2022). Nrf2 regulates oxidative stress and its role in cerebral ischemic stroke. Antioxidants, 11(12), 2377. https://doi.org/10.3390/antiox11122377
Wang, X., Li, R., Wang, X., Fu, Q., & Ma, S. (2015). Umbelliferone ameliorates cerebral ischemia–reperfusion injury via upregulating the PPAR gamma expression and suppressing TXNIP/NLRP3 inflammasome. Neuroscience Letters, 600, 182–187. https://doi.org/10.1016/j.neulet.2015.06.016
Wang, Y., Yang, J., & Yi, J. (2012). Redox sensing by proteins: Oxidative modifications on cysteines and the consequent events. Antioxidants & Redox Signaling, 16(6), 649–657. https://doi.org/10.1089/ars.2011.4313
Wardyn, J. D., Ponsford, A. H., & Sanderson, C. M. (2015). Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochemical Society Transactions, 43(4), 621–626. https://doi.org/10.1042/BST20150014
Yang, Z., Ning, R., Liu, Q., Zang, R., Liu, S., & Sun, S. (2023). Umbelliferone attenuates cisplatin‐induced acute kidney injury by inhibiting oxidative stress and inflammation via NRF2. Physiological Reports, 11, e15879. https://doi.org/10.14814/phy2.15879
Zhang, P., Pan, H., Wang, J., Liu, X., & Hu, X. (2014). Telomerase activity-independent function of telomerase reverse transcriptase is involved in acrylamide-induced neuron damage. Biotechnic & Histochemistry, 89(5), 327–335. https://doi.org/10.3109/10520295.2013.855323
Zhang, T., Zhang, C., Luo, Y., Liu, S., Li, S., Li, L., Ma, Y., & Liu, J. (2023). Protective effect of rutin on spinal motor neuron in rats exposed to acrylamide and the underlying mechanism. Neurotoxicology, 95, 127–135. https://doi.org/10.1016/j.neuro.2023.01.009
Zhao, M., Deng, L., Lu, X., Fan, L., Zhu, Y., & Zhao, L. (2022a). The involvement of oxidative stress, neuronal lesions, neurotransmission impairment, and neuroinflammation in acrylamide-induced neurotoxicity in C57/BL6 mice. Environmental Science and Pollution Research, 29, 41151–41167. https://doi.org/10.1007/s11356-021-18146-2
Zhao, M., Wang, F. S. L., Hu, X., Chen, F., & Chan, H. M. (2017). Acrylamide-induced neurotoxicity in primary astrocytes and microglia: Roles of the Nrf2-ARE and NF-κB pathways. Food and Chemical Toxicology, 106, 25–35. https://doi.org/10.1016/j.fct.2017.05.007
Zhao, M., Zhang, B., & Deng, L. (2022b). The mechanism of acrylamide-induced neurotoxicity: Current status and future perspectives. Frontiers in Nutrition, 9, 859189. https://doi.org/10.3389/fnut.2022.859189
Zhou, Z., Zhang, Y., Han, F., Chen, Z., & Zheng, Y. (2023). Umbelliferone protects against cerebral ischemic injury through selective autophagy of mitochondria. Neurochemistry International, 165, 105520. https://doi.org/10.1016/j.neuint.2023.105520