Bacillus cereus in meat products: Prevalence, toxins profile, antibiogram profile, and antimicrobial activity of Apple cider vinegar

Main Article Content

Nady Elbarbary
Nasreddin R. Rhouma
Mostafa M. Abdelhafeez
Layla A. Almutairi
Amin A Al-Doaiss
Ahmed Ezzat Ahmed
Sohaila Fathi El-Hawary
Mohamed K. Dandrawy
Mounir M. Bekhit
Wageh S. Darwish
Maha Abdelhaseib

Keywords

Antimicrobial resistance, Apple cider vinegar, Bacillus cereus, natural preservative, toxigenic genes

Abstract

Bacillus cereus is a significant foodborne bacterium that is prevalent in a variety of dietary products. This study aimed to assess the contamination rate, enterotoxin genes, and antibacterial susceptibility of B. cereus detected in 20 samples each of minced beef, beef shawarma, beef burger, beef kofta, beef sausage, chicken shawarma, chicken kofta, chicken kabab, and chicken sausage that were acquired from a variety of markets in the Aswan Governorate, Egypt. In addition, the antimicrobial impact of Apple cider vinegar (ACV) on B. cereus was investigated. The highest B. cereus levels were found in beef kofta samples (2.44×103 ± 0.18×102 CFU/g) and beef sausage (1.88×103 ± 0.12×102 CFU/g). On an average, 30% of the samples were contaminated with B. cereus. All of the putative isolates showed B. cereus DNA according to PCR findings of the gyrB gene. Most of the strains (16/54) had the hblA gene, which was substantially more abundant than hblC (7/54) and hblD (5/54). However, nheA was detected in 10/54 samples and was substantially more prevalent than nheB (5/54) and nheC (3/54). Of the strains, 10 out of 54 have cytK. By comparison, the cesB detection rate was just 6/54, indicating that emetic strains are less frequent in meat products than diarrhea strains. Most strains were resistant to ampicillin, cefoxitin, and colistin (100% each), while they were entirely sensitive to imipenem, nalidixic acid, and vancomycin, rendering them the most significant antibiotics. By the agar well diffusion technique, all concentrations of ACV (10%, 30%, 70%, and 100%) were confirmed to have significant inhibitory activities against B. cereus, suggesting that ACV could be employed as a natural antimicrobial preservative in meat products.

Abstract 354 | PDF Downloads 112 XML Downloads 57 HTML Downloads 0

References

Abd El Tawab A.A., Maarouf A.A., El-Hofy F.I., El-Said A.A. 2015. Bacteriological studies on some foodborne bacteria isolated from chicken meat and meat products in Kaliobia Governorate. BVMJ. 29(2): 47–59. https://doi.org/10.21608/bvmj.2015.31545
Algammal A.M., Eid H.M., Alghamdi S., Ghabban H., Alatawy R., Almanzalawi E.A., Alqahtani T.M., Elfouly S.G., Mohammed G.M., Hetta H.F., El-Tarabili R.M. 2024. Meat and meat products as potential sources of emerging MDR Bacillus cereus: groEL gene sequencing, toxigenic and antimicrobial resistance. BMC Microbial. 24(1): 50. https://doi.org/10.1186/s12866-024-03204-9
Al-Hadidy Y., Oleiwi S., Khalaf A., Saleh H. 2023. The effectiveness of adding apple cider vinegar and garlic to chicken meat kebabs as an antimicrobial and its role in improving its sensory and physiochemical properties. Kirkuk. Univ. J. Agricul. Sci. 14(1): 117–130.
Amin H.M. and Tawfick M.M. 2021. High risk of potential diarrheagenic Bacillus cereus in diverse food products in Egypt. J. Food Prot. 84(6): 1033–1039. https://doi.org/10.4315/jfp-20-384
Andrews J.M. 2001. Determination of minimum inhibitory concentrations. JAC. 48(suppl_1): 5–16. https://doi.org/10.1093/jac/48.suppl_1.5
Balouiri M., Sadiki M., Ibnsouda S.K. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6: 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Bashir M., Malik M.A., Moien J.M., Badroo G.A., Bhat A.M., Singh M. 2017. Prevalence and characterization of Bacillus cereus in meat and meat products in and around Jammu region of Jammu and Kashmir, India. Int. J. Curr. Microbiol. App. Sci. 6(12): 1094–1106. https://doi.org/10.20546/IJCMAS.2017.612.124
Berthold-Pluta A., Pluta A., Garbowska M., Stefańska I. 2019. Prevalence and toxicity characterization of Bacillus cereus in food products from Poland. Foods. 8(7): 269. https://doi.org/10.3390/foods8070269
Bhunia A.K. 2018. Foodborne microbial pathogens: Mechanisms and pathogenesis. New York, NY. Springer. https://doi.org/10.1007/978-1-4939-7349-1.
Bondoc I. 2016a. European Regulation in the Veterinary Sanitary and Food Safety Area, a Component of the European Policies on the Safety of Food Products and the Protection of Consumer Interests: A 2007 Retrospective. Part One: the Role of European Institutions in Laying Down and Passing Laws Specific to the Veterinary Sanitary and Food Safety Area. Universul Juridic, Supliment, pp. 12–15.
Bondoc I. 2016b. European Regulation in the Veterinary Sanitary and Food Safety Area, a Component of the European Policies on the Safety of Food Products and the Protection of Consumer Interests: A 2007 Retrospective. Part Two: Regulations. Universul Juridic, Supliment, pp. 16–19.
Centre for Food Safety. 2014. Microbiological Guidelines for Food (For Ready-to-Eat Food in General and Specific Food Items). Hong Kong: Centre for Food Safety/Food and Environmental Hygiene Department. https://www.cfs.gov.hk/english/food_leg/files/food_leg_Microbiological_Guidelines_for_Food_e.pdf
CLSI. 2012. Clinical and Laboratory Standards Institute. Reference method for dilution antimicrobial susceptibility tests. Approved standard M7-A6 (CLSI). National Committee for Clinical Laboratory Standards, Wayne, PA, USA.
CLSI. 2017. Bacillus. In: Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing: 27th Ed 424 Informational Supplement. CLSI; 2017. CLSI Doc. M100-S20 (2017). Wayne, PA, USA.
Ehling-Schulz M., Frenzel E., Gohar M. 2015. Food-bacteria interplay: Pathometabolism of emetic Bacillus cereus. Front. Microbiol. 6: 704. https://doi.org/10. 3389/fmicb.2015.00704
Ehling-Schulz M., Vukov N., Schulz A., Shaheen R., Andersson M., Martlbauer E., Scherer S. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71: 105–113. https://doi.org/10.1128/aem. 71.1.105-113.2005
Elbarbary N., Dandrawy M.K., Hadad G., Abdelhaseib M., Amna A., Alenazy R., Elbagory I., Abdelmotilib N.M., Elnoamany F., Ibrahim G.A., Gomaa R.A. 2024. Bacterial quality and molecular detection of food poisoning virulence genes isolated from Nasser Lake Fish, Aswan, Egypt. Int. J. Food Sci. 6095430: 12. https://doi.org/10.1155/2024/6095430
El-Hawary S.F., Ali M.A., Mounir M.B., Ehab I.T., Abdelhaseib M., Abdelmotilib M., Mohamed M., Nady Kh.E. 2025. Tackling food spoilage bacteria: How pomegranate peel extract can improve beef safety. Italian J. Food Sci. 37: (2). https://doi.org/10.15586/ijfs.v37i2.2945
ECDC. 2019. European Centre for Disease Prevention and Control. The European Union one health 2018 zoonoses report. EFSA J.17(12): e05926.
Foxcroft N., Masaka E., Oosthuizen J. 2024. Prevalence trends of foodborne pathogens Bacillus cereus, non-STEC Escherichia coli and Staphylococcus aureus in ready-to-eat foods sourced from restaurants, cafés, catering and takeaway food premises. Int. J. Environ. Res. Public Health. 21: 1426. https://doi.org/10.3390/ijerph21111426
FSANZ. 2001. Food Standards Australia New Zealand. Microbiological quality guide for ready-to-eat foods. A guide to interpreting microbiological results; 2001.
Fraccalvieri R., Bianco A., Difato L.M., Capozzi L., Del Sambro L., Simone D., Catanzariti R., Caruso M., Galante D., Normanno G., Palazzo L., Tempesta M., Parisi A. 2022. Toxigenic genes, pathogenic potential and antimicrobial resistance of Bacillus cereus group isolated from ice cream and characterized by whole genome sequencing. Foods. 11(16): 2480. https://doi.org/10.3390/foods11162480
Friedman N.D., Temkin E., Carmeli Y. 2016. The negative impact of antibiotic resistance. Clin. Microbiol. Infect. 22: 416–422. https://doi.org/10.1016/j.cmi. 2015.12.002
Gaber S.N., Bassyouni R.H., Masoud M., Ahmed F.A. 2020. Promising anti-microbial effect of apple vinegar as a natural decolonizing agent in healthcare workers. Alexandria J. Med. 56(1): 73–80. https://doi.org/10.1080/20905068.2020.1769391
Gao T., Ding Y., Wu Q., Wang J., Zhang J., Yu S., Yu P., Liu C., Kong L., Feng Z., Chen M., Wu S., Zeng H., Wu H. 2018. Prevalence, virulence genes, antimicrobial susceptibility, and genetic diversity of bacillus cereus isolated from pasteurized milk in China. Front. Microbiol. 9: 533. https://doi.org/10.3389/fmicb.2018.00533
Giffel M.C., Beumer M.C., Slaghuis R.R., Rombouts F.M. 1996. Occurrence and characterization of (psychrostrophic) B. cereus on farms in the Netherlands. Neth. Milk Dairy J. 49: 125–238.
Hansen B.M. and Hendriksen N.B. 2001. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67: 185–189. https://doi.org/10.1128/aem.67.1.185-189.2001
Hassan M., Amin R., Eleiwa N., Hussien F. 2019. Antimicrobial effect of nisin on Bacillus cereus isolated from some meat products. Benha Vet. Med. J. 37(1): 77–80. https://doi.org/10.21608/bvmj.2019.18087.1113
Health Protection Agency. 2009. Guidelines for assessing the microbiological safety of ready-to‐eat foods placed on the market. In: Health Protection Agency London; 2009.
Hwang J.Y. and Park J.H. 2015. Characteristics of enterotoxin distribution, hemolysis, lecithinase, and starch hydrolysis of Bacillus cereus isolated from infant formulas and ready-to-eat foods. J. Dairy Sci. 98(3): 1652–60. https://doi.org/10.3168/jds.2014-9042
Ikeda M., Yagihara Y., Tatsuno K., Okazaki M., Okugawa S., Moriya K. 2015. Clinical characteristics and antimicrobial susceptibility of Bacillus cereus blood stream infections. Ann. Clin. Microbiol. Antimicrob. 14: 43. https://doi.org/10.1186/s12941-015-0104-2
ISO, 21871. 2006. Standard microbiology of food and feeding stuffs. Horizontal method for the determination of low numbers of presumptive Bacillus cereus. Geneva, Switzerland: International Organization for Standardization, ISO—Bacillus cereus, p. 14.
Khairy E.N., Al-Qaaneh A.M., Mounir M.B., Abdelhaseib M., Reda A.G., Ali M.A., Salem M.M., Malak N.M. 2024. Citrus reticulata flavonoids as a valuable source for reducing meat-borne Aeromonas hydrophila. Italian J. Food Sci. 36(3): 263–273. https://doi.org/10.15586/ijfs.v36i3.2606
Lozano C., López M., Rojo-Bezares B., Sáenz Y. 2020. Antimicrobial susceptibility testing in Pseudomonas aeruginosa biofilms: One step closer to a standardized method. Antibiotics (Basel). 9: 880. http://dx.doi.org/10.3390/antibiotics9120880
Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M., Giske C., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., Paterson D.L., Rice L.B., Stelling J., Struelens M.J., Vatopoulos A., Weber J.T., Monnet D.L. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18(3): 268–81. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Mahmoud R.M., Gharib A.A., Abd El-Aziz N.K., Ali E.M., Mokhtar A., Ibrahim G.A., Ammar A.M. 2024. Apple cider vinegar exhibits promising antibiofilm activity against multidrug-resistant Bacillus cereus isolated from meat and their products. Open Vet. J. 14(1): 186–199. https://doi.org/10.5455/OVJ.2024.v14.i1.17
Mostafa N.F., Elkenany R.M., Younis G. 2022. Characterization of Bacillus cereus isolated from contaminated foods with sequencing of virulence genes in Egypt. Braz. J. Biol. 84: e257516. https://doi.org/10.1590/1519-6984.257516
Nady K., Abdelmotilib N.M., Salem-Bekhit M.M., Salem M.M., Singh S., Dandrawy M.K. 2024. Antibacterial efficiency of apple vinegar marination on beef-borne Salmonella. Open Vet. J. 14(1): 274–283. https://doi.org/10.5455/OVJ.2024.v14.i1.24
Owusu-Kwarteng J., Wuni A., Akabanda F., Tano-Debrah K., Jespersen L. 2017. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products. BMC Microbiol. 17(1): 1–8. https://doi.org/10.1186/s12866-017-0975-9
Primavilla S., Pagano C., Roila R., Branciari R., Ranucci D., Valiani A., Ricci M., Perioli L. 2023. Antibacterial activity of Crocus sativus L. petals extracts against foodborne pathogenic and spoilage microorganisms, with a special focus on Clostridia. Life. 13: 60. https://doi.org/10.3390/life13010060
Qenawy E.M., Abou-Ellail M., Abdel-Motaal F., Alshaharni M.O., Elbarbary N.K. 2024. Prevalence of Pseudomonas aeruginosa, Escherichia coli, and their virulence genes in adulterated meat products. Adv. Anim. Vet. Sci. 12: 139–149. http://dx.doi.org/10.17582/journal.aavs/2024/12.s1.139.149
Quinn P.J., Markey B.K., Carter M.E., Donnelly W.J., Leonard F.C., Meguire D. 2002. Veterinary microbiology and microbial disease, 2nd ed. Blackwell Science, Iowa State University Press, Ames, Iowa, USA, pp: 84–96.
Savić D., Miljković-Selimović B., Lepšanović Z., Tambur Z., Konstantinović S., Stanković N., Ristanović E. 2016. Antimicrobial susceptibility and β-lactamase production in Bacillus cereus isolates from stool of patients, food and environment samples. Vojnosanit Pregl. 73(10): 904–9. https://doi.org/10.2298/VSP150415134S
Shawish R.R. and Al-Humam N.A. 2016. Contamination of beef products with staphylococcal classical enterotoxins in Egypt and Saudi Arabia. GMS HIC. 11: Doc08. https://doi.org/10.3205/dgkh000268
Shawish R. and Tarabees R. 2017. Prevalence and antimicrobial resistance of Bacillus cereus isolated from beef products in Egypt. Open Vet. J. 7(4): 337–341. https://doi.org/10.4314/ovj.v7i4.9
Song Z., Zhao Q., Zhu L., Zhang Z., Jiang L., Huang H. 2019. Draft genome sequence of multidrug-resistant b-lactamase-producing Bacillus cereus S66 isolated from China. J. Glob. Antimicrob. Resist. 17: 23–24. https://doi.org/10.1016/j. jgar.2019.02.019
Stenfors Arnesen L.P., Fagerlund A., Granum P.E. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32(4): 579–606. https://doi.org/10.1111/j.1574-6976.2008.00112.x
Tallent S.M., Kotewicz K.M., Strain E.A., Bennett R.W. 2012. Efficient isolation and identification of Bacillus cereus group. J. AOAC Int. 95(2): 446–451. https://doi.org/10.5740/jaoacint.11-251
Tewari A., Singh S.P., Singh R. 2015. Incidence and enterotoxigenic profile of Bacillus cereus in meat and meat products of Uttarakhand, India. J. Food Sci. Technol. 52(3): 1796–801. https://doi.org/10.1007/s13197-013-1162-0
Tirloni E., Stella S., Celandroni F., Mazzantini D., Bernardi C., Ghelardi E. 2022. Bacillus cereus in dairy products and production plants. Foods. 11: 2572. https://doi.org/10.3390/foods11172572
Tropea A. 2022. Microbial contamination and public health: An overview. Int. J. Environ. Res. Public. Health. 19: 7441. https://doi.org/10.3390/ijerph19127441
Yagnik D., Ward M., Shah A.J. 2021. Antibacterial apple cider vinegar eradicates methicillin resistant Staphylococcus aureus and resistant Escherichia coli. Sci. Rep. 11(1): 17. https://doi.org/10.1038/s41598-020-78407-x
Yu S., Yu P., Wang J., Li C., Guo H., Liu C., Kong L., Yu L., Wu S., Lei T., Chen M., Zeng H., Pang R., Zhang Y., Wei X., Zhang J., Wu Q., Ding Y. 2020. A study on prevalence and characterization of Bacillus cereus in ready-to-eat foods in China. Front. Microbiol. 10: 3043. https://doi.org/10.3389/fmicb.2019.03043