Nutritional and growth enhancement of alfalfa sprouts through cold plasma and UV seed treatments
Main Article Content
Keywords
cold plasma, ultraviolet radiation, seed treatment, alfalfa sprouts, germination, growth, phytochemicals
Abstract
Employing eco-friendly techniques like cold plasma (CP) and ultraviolet (UV) radiation provides innovative approaches to enhance the sprout quality and productivity of alfalfa. This study explores the effects of CP and UV radiation on the germination, growth, and phytochemical profiles of alfalfa sprouts. CP significantly accelerated germination time, reducing median germination time by 8 hours compared to the control, and enhanced photosynthetic pigments, leading to higher biomass (25.87 mg/sprout fresh weight and 1.45 mg/sprout dry weight). UV treatments, particularly UV-C, increased chlorophyll and total flavonoid content. Overall, CP effectively promotes alfalfa germination and growth, while UV treatments improve specific phytochemicals.
References
Beck S.E., Ryu H., Boczek L.A., Cashdollar J.L., Jeanis K.M., Rosenblum J.S., Lawal O.R., Linden K.G. 2017. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy. Water Res. 109: 207–216. https://doi.org/10.1016/j.watres.2016.11.024
Benabderrahim M.A., Bettaieb I., Hannachi H., Rejili M., Dufour T. 2024. Cold plasma treatment boosts barley germination and seedling vigor: Insights into soluble sugar, starch, and protein modifications. J. Cereal Sci. 116: 103852. https://doi.org/10.1016/j.jcs.2024.103852
Bera K., Dutta P., Sadhukhan S. 2022. Seed priming with non-ionizing physical agents: Plant responses and underlying physiological mechanisms. Plant Cell Rep. 41: 53–73. https://doi.org/10.1007/s00299-021-02798-y
Bourke P., Ziuzina D., Boehm D., Cullen, P.J., Keener K., 2018. The potential of cold plasma for safe and sustainable food production. Trends Biotechnol. 36: 615–626. https://doi.org/10.1016/j.tibtech.2017.11.001
Bradford M.M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Chachalis D., Darawsheh M.K., Khah E.M., 2008. Effects of initial seed moisture content, imbibition temperature and seed vigor on germination, electrolyte leakage and seedling growth in plum tomatoes. J. Food Agric. Env. 6: 299–304. https://doi.org/10.1234/4.2008.1343
Díaz-Leyva C.E., Bacópulos-Mejía E., Ruiz-Torres N.A., Ibarra-Jiménez L., Gonzales-Morales S., Benavides-Mendoza A. 2017. Irradiation of tomato seeds with Uv-B and UV-C: Impact on germination, vigor and growth. Revista mexicana de ciencias agrícolas. 8: 105–118. https://doi.org/10.29312/remexca.v8i1.75
Djeridane A. Yousfi M., Nadjemi B., Boutassouna D., Stocker P., Vidal N. 2006. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97,4: 654-660. https://doi.org/10.1016/j.foodchem.2005.04.028
Fiutak G., Mohammadi X., Filipczak-Fiutak M., Jarzębski M., Sterczyńska M., Pratap-Singh A. 2024. Pre-harvest applications of pulsed light increases vitamin C, chlorophyll, carotenoids and proteins in alfalfa sprouts. Sci. Hortic. 332: 113200. https://doi.org/10.1016/j.scienta.2024.113200
Foroughbakhch Pournavab R., Bacópulos Mejía E., Benavides Mendoza A., Salas Cruz L.R., Ngangyo Heya M. 2019. Ultraviolet radiation effect on seed germination and seedling growth of common species from Northeastern Mexico. Agronomy. 9: 269. https://doi.org/10.3390/agronomy9060269
Ghazouani S., Hannachi H., Ben Nasri-Ayachi M., 2021. Morphological, physiological, and biochemical responses of Tunisian Urtica pilulifera L. under salt constraint. South Afric. J. Bot. 142: 124–130. https://doi.org/10.1016/j.sajb.2021.06.017
Gunes A., Inal A., Alpasla M., Erasla F., Bagc E.G., Cicek N. 2007. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant Physiol. 164: 728–736. https://doi.org/10.1016/j.jplph.2005.12.009
Hadidi M., Palacios J.C.O., McClements D.J., Mahfouzi M., Moreno A. 2023. Alfalfa as a sustainable source of plant-based food proteins. Trends Food Sci. Techn. 135: 202–214. https://doi.org/10.1016/j.tifs.2023.03.023
Hernandez-Aguilar C., Dominguez-Pacheco A., Tenango M.P., Valderrama-Bravo C., Hernández M.S., Cruz-Orea A., Ordonez-Miranda J. 2021. Characterization of bean seeds, germination, and phenolic compounds of seedlings by UV-C radiation. J. Plant Growth Reg. 40: 642–655. https://doi.org/10.1007/s00344-020-10125-0
Jinkui F.E.N.G., Decheng W.A.N.G., Changyong S.H.A.O., Zhang L., Xin T.A.N.G., 2018. Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress. Plasma Sci. Techn. 20: 035505. https://doi.org/10.1088/2058-6272/aa9b27
Kotilainen T., Tegelberg R., Julkunen-Tiitto R., Lindfors A., Aphalo P.J. 2008. Metabolite specific effects of solar UV-A and UV-B on alder and birch leaf phenolics. Global Change Biol. 14: 1294–1304. https://doi.org/10.1111/j.1365-2486.2008.01569.x
Kameswara Rao N., Dulloo M.E., Engels J.M. 2017. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genetic Res. Crop Evol. 64: 1061–1074. https://doi.org/10.1007/s10722-016-0425-9
Kondrateva N.P., Kasatkina N.I., Kuryleva A.G., Baturina K.A., Ilyasov I.R., Korepanov R.I., 2020. Effect of treatment of seeds of grain crops by ultraviolet radiation before sowing. In IOP Conference Series. Earth Envir. Sci. 433: 012039. https://doi.org/10.1088/1755-1315/433/1/012039
Lazar S.L., Mira S., Pamfil D., Martinez-Laborde J.B. 2014. Germination and electrical conductivity tests on artificially aged seed lots of 2 wall-rocket species. Turkish J. Agric. For. 38, 857–864. https://doi.org/10.3906/tar-1402-76
Li Y.J., Wang T.C., Meng Y.R., Qu G.Z., Sun Q.H., Liang D.L., Hu S.B., 2017. Air atmospheric dielectric barrier discharge plasma induced germination and growth enhancement of wheat seed. Plasma Chem. Plasma Proc. 37: 1621–1634. https:// doi.org/10.1007/s11090-017-9835-5
Lim Y.J., Lyu J.I., Kwon S.J., Eom S.H. 2021. Effects of UV-A radiation on organ-specific accumulation and gene expression of isoflavones and flavonols in soybean sprout. Food Chem. 339: 128080. https://doi.org/10.1016/j.foodchem.2020.128080
Ling L, Jiafeng J, Jiangang L, Minchong S, Xin H, Hanliang S, Yuanhua D. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Scientific reports. 2014 Jul 31;4(1):5859.
Liu B., Liu X.B., Li Y.S., Herbert S.J. 2013. Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean. Field Crops Res. 154: 158–163. https://doi.org/10.1016/j.fcr.2013.08.006
Manmathan H., Shaner D., Snelling J., Tisserat N., Lapitan N. 2013. Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance. J Exp Bot. 64(5): 1381-1392. https://doi.org/10.1093/jxb/ert003
Mariz-Ponte N., Mendes R.J., Sario S., Melo P., Santos C., 2018. Moderate UV-A supplementation benefits tomato seed and seedling invigoration: A contribution to the use of UV in seed technology. Sci. Hortic. 235, 357–366. https://doi.org/10.1016/j.scienta.2018.03.025
Mariz-Ponte N., Mendes R.J., Sario S., Correia C.V., Correia C.M., Moutinho-Pereira J., Melo P., Dias M.C., Santos C. 2021. Physiological, biochemical and molecular assessment of UV-A and UV-B supplementation in Solanum lycopersicum. Plants. 10 : 918. https://doi.org/10.3390/plants10050918
Mildaziene V., Ivankov A., Sera B., Baniulis D., 2022. Biochemical and physiological plant processes affected by seed treatment with non-thermal plasma. Plants. 11: 856. https://doi.org/10.3390/plants11070856
Motrescu I., Lungoci C., Calistru A.E., Luchian C.E., Gocan T.M., Rimbu C.M., Bulgariu E., Ciolan M.A., Jitareanu G. 2024. Non-thermal plasma (NTP) treatment of alfalfa seeds in different voltage conditions leads to both positive and inhibitory outcomes related to sprout growth and nutraceutical properties. Plants. 13: 1140. https://doi.org/10.3390/plants13081140
Neelamegam R. and Sutha T. 2015. UV-C irradiation effect on seed germination, seedling growth and productivity of groundnut (Arachis hypogaea L.). Int. J. Curr. Microbiol. App. Sci. 4: 430–443.
Niedźwiedź I., Waśko A., Pawłat J., Polak-Berecka M. 2019. The state of research on antimicrobial activity of cold plasma. Polish J. Microbiol. 68: 153–164. https://doi.org/10.33073/pjm-2019-028
Ort D.R., Merchant S.S., Alric J., Barkan A., Blankenship R.E., Bock R., Croce R., Hanson M.R., Hibberd J.M., Long S.P., Moore T.A., 2015. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proceed. Nation Academ. Sci. 112, 8529–8536. https://doi.org/10.1073/pnas.1424031112
Ozel H.B., Abo Aisha A.E.S., Cetin M., Sevik H., Zeren Cetin I. 2021. The effects of increased exposure time to UV-B radiation on germination and seedling development of Anatolian black pine seeds. Envir. Monit. Assess. 193: 388. https://doi.org/10.1007/s10661-021-09178-9
Paparella S., Araújo S.S., Rossi G., Wijayasinghe M., Carbonera D., Balestrazzi A. 2015. Seed priming: State of the art and new perspectives. Plant Cell Rep. 34: 1281–1293. https://doi.org/10.1007/s00299-015-1784-y.
Peykarestan B. and Seify M. 2012. UV irradiation effects on seed germination and growth, protein content, peroxidase and protease activity in redbean. Int. J. Sci. Engin. Investig. 1: 107–113.
Rajkowski K.T. and Thayer D.W. 2001. Alfalfa seed germination and yield ratio and alfalfa sprout microbial keeping quality following irradiation of seeds and sprouts. J. food Protec. 64: 1988–1995. https://doi.org/10.4315/0362-028X-64.12.1988
Semenov A., Korotkova I., Sakhno T., Marenych M., Нanhur V., Liashenko V., Kaminsky V. 2020. Effect of UV-C radiation on basic indices of growth process of winter wheat (Triticum aestivum L.) seeds in pre-sowing treatment. Acta Agric. Slovenica. 116: 49–58. https://doi.org/10.14720/aas.2020.116.1.1563
Sera B., Spatenka P., S̆erý M., Vrchotova N., Hruskova I. 2010. Influence of plasma treatment on wheat and oat germination and early growth. IEEE Transactions on Plasma Science, 38(10): pp.2963-2968. https://doi.org/10.1109/TPS.2010.2060728
Staub A.M., 1963. Extraction, identification et dosages des glucides dans les extraits d’organes et les corps bactériens. In: Masson et Compagnie. Techniques de laboratoire, Tome 1 et 2, pp. 1307–1366. Paris.
Sukthavornthum W., Bodhipadma K., Noichinda S., Phanomchai S., Deelueak U., Kachonpadungkitti Y., Leung D.W. 2018. UV-C irradiation induced alterations in shoot proliferation and in vitro flowering in plantlets developed from encapsulated and non-encapsulated microshoots of Persian violet. Sci. Hortic. 233:9–13. https://doi.org/10.1016/j.scienta.2018.01.027
Sheteiwy M.S., An J., Yin M., Jia X., Guan Y., He F., Hu J. 2019. Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings. Protoplasma. 256 : 79–99. https://doi.org/10.1007/s00709-018-1279-0
Sun K., Peng Y., Wang M., Li W., Li Y., Chen J., 2024. Effect of red and blue light on the growth and antioxidant activity of alfalfa Sprouts. Hortic. 10: 76. https://doi.org/10.3390/horticulturae10010076
Tang X., Liang F., Zhao L., Zhang L., Shu J., Zheng H., Qin X., Shao C., Feng J., Du K., 2016. Stimulating effect of low-temperature plasma (LTP) on the germination rate and vigor of alfalfa seed (Medicago sativa L.). In: Li, D., Li, Z. (Eds), Computer and Computing Technologies in Agriculture IX. CCTA 2015. IFIP Advances in Information and Communication Technology 479. Springer, Cham. https://doi.org/10.1007/978-3-319-48354-2_53
Tang C.J., Luo M.Z., Zhang S., Jia G.Q., Sha T.A.N.G., Jia Y.C., Hui Z.H.I., Diao X.M. 2023. Variations in chlorophyll content, stomatal conductance, and photosynthesis in Setaria EMS mutants. J. Integ. Agric. 22: 1618–1630. https://doi.org/10.1016/j.jia.2022.10.014
Tucak M., Ravlić M., Horvat D., Čupić T. 2021. Improvement of forage nutritive quality of alfalfa and red clover through plant breeding. Agronomy. 11: 2176. https://doi.org/10.3390/agronomy11112176
Verdaguer D., Jansen M.A., Llorens L., Morales L.O., Neugart S. 2017. UV-A radiation effects on higher plants: Exploring the known unknown. Plant Sci. 255: 72–81. https://doi.org/10.1016/j.plantsci.2016.11.014
Yao X., Chu J., He X., Si C. 2014. Grain yield, starch, protein, and nutritional element concentrations of winter wheat exposed to enhanced UV-B during different growth stages. J. Cereal Sci. 60: 31–36. https://doi.org/10.1016/j.jcs.2014.01.012
Yan Y. 2020. Long-term exposure to solar blue and UV radiation in legumes: Pre-acclimation to drought and accession-dependent responses in two successive generations. Helsingin yliopisto. http://urn.fi/URN:ISBN:978-951-51-6933-4