Unlocking the neuroprotective potential of Citrus japonica peel oil Gas chromatography-mass spectrometry analysis and anti-Parkinsonian activity in a paraquat rat model
Main Article Content
Keywords
Citrus japonica, antioxidant, neuroprotective, Parkinson disease, oxidative stress, neuroinflam-mation, animal behavior
Abstract
Citrus japonica, commonly known as Kumquat, is an economically and pharmacologically important citrus fruit, indigenous to Asia-Pacific and South Asia. The current work seeks to investigate the neuroprotective potential of the essential oil extracted from C. japonica fruit’s peel in a paraquat (PQT)-induced dopaminergic neurodegeneration rat model, as well as the chemical profiling by using gas chromatography-mass spectrometry (GC/MS) analysis. The Parkinson’s disease (PD) rat model was prepared by administering PQT at 5-day intervals of 10 mg/kg i.p. for 3 weeks. Animals were divided into healthy (received normal saline), PD control, standard treated (L-dopa 100 mg/kg + carbidopa 25 mg/kg), and CJ 50 and 100 (received 50 μL and 100 μL C. japonica peel oil). Behavioral studies were performed before biochemical, neurochemical, histopathological, and gene expression analysis. The GC/MS analysis identified seven volatile chemical compounds, predominated by D-limonene (98.17%), followed by β-pinene (0.68%), α-terpineol (0.40%), germacrene D (0.36%), α-pinene (0.17%), terpinen-4-ol (0.15%) and γ-terpinene (0.07%). The behavioral study indicated that C. japonica peel oil treatment significantly improved the motor and cognitive impairments as well as the neuromuscular coordination. Biochemical study indicated a decrease in the oxidative burden; improved hematological, liver, and renal profiles; an increase in the acetylcholin-esterase level; and upregulation of the mRNA expression of IL-1α, IL-1β, TNF-α, α–synuclein, and amyloid beta precursor protein. Current findings indicate that this oil mitigates motor and nonmotor PD-aasociated symptoms, reduces oxidative stress, and regulates the mRNA expression of pathological genes. Consequently, it is proposed that C. japonica oil may be used as a novel disease-modifying therapeutic remedy in the treatment of PD.
References
Abdel-Salam O.M., El-Shamarka M.E.S., Salem N.A., Gaafar A.E.D.M.J. E.J. 2012. Effects of cannabis sativa extract on haloperidol-induced catalepsy and oxidative stress in the mice. EXCLI Journal. 11: 45.
Abdelghffar E.A., El-Nashar H.A., Al-Mohammadi A.G., Eldahshan O.A. 2021. Orange fruit (Citrus sinensis) peel extract attenuates chemotherapy-induced toxicity in male rats. Food Funct. 12: 9443–9455. https://doi.org/10.1039/D1FO01905H
Ahmad M.H., Fatima M., Ali M., Rizvi M.A., Mondal, A.C. 2021. Naringenin alleviates paraquat-induced dopaminergic neuronal loss in SH-SY5Y cells and a rat model of Parkinson's disease. Neuropharmacology. 201: 108831. https://doi.org/10.1016/j.neuropharm.2021.108831
Al-Saman M.A., Abdella, A., Mazrou K.E., Tayel A.A., Irmak S. 2019. Antimicrobial and antioxidant activities of different extracts of the peel of kumquat (Citrus japonica Thunb). J. Food Meas. Charact. 13: 3221–3229. https://doi.org/10.1007/s11694-019-00244-y
Armstrong, M.J. and OKUN, M.S. 2020. Diagnosis and treatment of Parkinson disease: A review. Jama. 323: 548–560. https://doi.org/10.1001/jama.2019.22360
Aydin E., Hritcu L., Dogan G., Hayta S., Bagci, E. 2016. The effects of inhaled Pimpinella peregrina essential oil on scopolamine-induced memory impairment, anxiety, and depression in laboratory rats. Mol. Neurobiol. 53: 6557–6567. https://doi.org/10.1007/s12035-016-9693-9
Baky M.H., Elkenawy N.M., El-Nashar H.A., Abib B., Farag M.A. 2024. Comparison of autoclaving and γ-radiation impact on four spices aroma profiles and microbial load using HS-SPME GC–MS and chemometric tools. Sci. Rep. 14: 5752. https://doi.org/10.1038/s41598-024-56422-6
Balestrino R. and Schapira A. 2020. Parkinson disease. Eur. J. Neurol. 27: 27–42. https://doi.org/10.1111/ene.14108
Ben‐Shaul Y., Benmoyal‐Segal L., Ben‐Ari S., Bergman H., Soreq H.J.E.J.O.N. 2006. Adaptive acetylcholinesterase splicing patterns attenuate 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine‐induced Parkinsonism in mice. 23: 2915–2922. https://doi.org/10.1111/j.1460-9568.2006.04812.x
Beserra-Filho J.I., Silva-Martins S., Silva S., Custodio-Silva A.C., Soares-Silva B., Carvalhinho-Lopes P., Ribeiro D., Estadella D., Santos J., Quintans-Júnior L. 2023. D-limonene complexed with β-cyclodextrin attenuates behavioral deficits and reduces astrogliosis in a progressive parkinsonism animal model. IBRO Neurosci. Rep. 15: S485. https://doi.org/10.1016/j.ibneur.2023.08.947
Bhangale J.O. and Acharya S.R.J.A.I.P.S. 2016. Anti-Parkinson activity of petroleum ether extract of Ficus religiosa (L.) leaves. 2016. https://doi.org/10.1155/2016/9436106
Blesa J., Trigo-Damas I., Quiroga-Varela A., Jackson-Lewis V.R. 2015. Oxidative stress and Parkinson’s disease. Front. Neuroanat. 9: 91.
https://doi.org/10.3389/fnana.2015.00091
Braak H. and Braak E. 2000. Pathoanatomy of Parkinson’s disease. J. Neurol. 247: II3–II10.
https://doi.org/10.1007/PL00007758
Brichta L., Greengard P., Flajolet M. 2013. Advances in the pharmacological treatment of Parkinson’s disease: Targeting neurotransmitter systems. Trends in Neurosci. 36: 543–554.
https://doi.org/10.1016/j.tins.2013.06.003
Brooks A., Chadwick C., Gelbard H., Cory-Slechta D., Federoff, H. 1999. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res. 823: 1–10.
https://doi.org/10.1016/S0006-8993(98)01192-5
Chauhdary Z., Saleem U., Ahmad B., Shah S., Shah, M.A. 2019. Neuroprotective evaluation of Tribulus terrestris L. in aluminum chloride induced Alzheimer’s disease. Pak. J. Pharm. Sci. 32.
Chitra V., Manasa K., Mythili A., Tamilanban T., Gayathri, K. 2017. Effect of hydroalcoholic extract of Achyranthes aspera on haloperidolinduced Parkinson's disease in wistar rats. AJPCR. 318–321. https://doi.org/10.22159/ajpcr.2017.v10i9.19285
Choi H.S. 2005. Characteristic odor components of kumquat (Fortunella japonica Swingle) peel oil. J. Agric. Food Chem. 53: 1642–7. https://doi.org/10.1021/jf040324x
Conforti F., Statti G.A., Tundis R., Loizzo M.R., Menichini F. 2007. In vitro activities of Citrus medica L. cv. Diamante (Diamante citron) relevant to treatment of diabetes and Alzheimer’s disease. Phytother. Res. 21: 427–433. https://doi.org/10.1002/ptr.2077
Connolly B.S. and Lang A.E. 2014. Pharmacological treatment of Parkinson disease: A review. JAMA. 311: 1670–1683. https://doi.org/10.1001/jama.2014.3654
Daglia M., Di Lorenzo A., F Nabavi S., S Talas, Z., M Nabavi S. 2014. Polyphenols: Well beyond the antioxidant capacity: Gallic acid and related compounds as neuroprotective agents: You are what you eat! Curr. Pharm. Biotechnol. 15: 362–372. https://doi.org/10.2174/138920101504140825120737
De Menezes Filho A. and Castro, C.D.S. 2019. Chemical characterization and antifungal activity of essential oil of Orange Kinkan (Fortunella margarita (Lour.) Swingle). Folia Amaz.: 28: 185–198. https://doi.org/10.24841/fa.v28i2.482
Dickson D.W. 2018. Neuropathology of Parkinson disease. Parkinsonism & related disorders. 46: S30–S33. https://doi.org/10.1016/j.parkreldis.2017.07.033
Eddin L.B., Azimullah S., Jha N.K., Nagoor Meeran M.F., Beiram R., Ojha S. 2023. Limonene, a monoterpene, mitigates rotenone-induced dopaminergic neurodegeneration by modulating neuroinflammation, Hippo signaling and apoptosis in rats. Int. J. Mol. Sci.. 24: 5222.
https://doi.org/10.3390/ijms24065222
Eddin L.B., Jha N.K., Meeran M.N., Kesari K.K., Beiram R., Ojha, S. 2021. Neuroprotective potential of limonene and limonene containing natural products. Molecules. 26: 4535.
https://doi.org/10.3390/molecules26154535
El-Nashar H.A., Mostafa N.M., El-Badry M.A., Eldahshan O.A., Singab A.N.B. 2021. Chemical composition, antimicrobial and cytotoxic activities of essential oils from Schinus polygamus (Cav.) cabrera leaf and bark grown in Egypt. Nat. Prod. Res. 35: 5369–5372.
https://doi.org/10.1080/14786419.2020.1765343
El‐Nashar H.A., Adel M., El‐Shazly M., Yahia I.S., El Sheshtawy H.S., Almalki A.A., Ibrahim N. 2022. Chemical composition, antiaging activities and molecular docking studies of essential oils from Acca sellowiana (Feijoa). Chem Biodivers. 19: e202200272.
https://doi.org/10.1002/cbdv.202200272
Elhawary E.A., Mostafa N.M., Labib R.M., Singab A.N. 2021. Metabolomic profiles of essential oils from selected rosa varieties and their antimicrobial activities. Plants. 10: 1721.
https://doi.org/10.3390/plants10081721
Farasati Far B., Gouranmohit G., Naimi‐Jamal M.R., Neysani E., El‐Nashar H.A., El‐Shazly M., Khoshnevisan K. 2024. The potential role of Hypericum perforatum in wound healing: A literature review on the phytochemicals, pharmacological approaches, and mechanistic perspectives. Phytother. Res. https://doi.org/10.1002/ptr.8204
Giagkou N., Maraki M.I., Yannakoulia M., Kosmidis M.H., Dardiotis E., Hadjigeorgiou G.M., Sakka P., Ntanasi E., Anastasiou C. A., Xiromerisiou, G. 2020. A prospective validation of the updated movement disorders society research criteria for prodromal Parkinson’s disease. Mov. Disord. 35: 1802–1809. https://doi.org/10.1002/mds.28145
Hamedi A., Zengin G., Aktumsek A., Selamoglu Z., Pasdaran, A. 2020. In vitro and in silico approach to determine neuroprotective properties of iridoid glycosides from aerial parts of Scrophularia amplexicaulis by investigating their cholinesterase inhibition and anti-oxidant activities. Biointerface Res. Appl. Chem. 10: 5429–5454. https://doi.org/10.33263/BRIAC103.429454
Henchcliffe C. and Beal M.F. 2008. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat. Clin. Pract. Neurol. 4: 600–609. https://doi.org/10.1038/ncpneuro0924
Hunot S. and Hirsch E. 2003. Neuroinflammatory processes in Parkinson’s disease. Ann. Neurol. 53: S49–S60. https://doi.org/10.1002/ana.10481
Iqbal A., Anwar F., Saleem U., Khan S.S., Karim A., Ahmad B., Gul M., Iqbal Z., Ismail T. 2022. Inhibition of oxidative stress and the NF-κB pathway by a vitamin E derivative: Pharmacological approach against Parkinson’s disease. ACS Omega. 7: 45088–45095. https://doi.org/10.1021/acsomega.2c05500
Jachak S.M. and Saklani A. 2007. Challenges and opportunities in drug discovery from plants. Curr. Sci. 1251–1257.
Jiang H. and Zhang X.J. 2008. Acetylcholinesterase and apoptosis. A novel perspective for an old enzyme. FEBS J. 275: 612–7. https://doi.org/10.1111/j.1742-4658.2007.06236.x
Kabara J. 1991. Phenols and chelators. Food Preserv. 200: 214.
Kamli H., Ali A.A.M., Salem Y.H., Shaikh A., El‐Nashar, H.A. 2024. Chemical profiling and enzyme inhibitory activities of essential oil isolated from Pistacia khinjuk leaves: Insights on GC‐MS analysis and skin aging‐relevant enzymes. Chem. Biodivers. e202302096.
https://doi.org/10.1002/cbdv.202302096
Khoo T.K., Yarnall A.J., Duncan G.W., Coleman S., O'Brien J.T., Brooks D.J., Barker R.A., Burn D.J. 2013. The spectrum of nonmotor symptoms in early Parkinson disease. Neurology. 80: 276–281. https://doi.org/10.1212/WNL.0b013e31827deb74
Koprich J.B., Reske-Nielsen C., Mithal P., Isacson O.J.J.O.N. 2008. Neuroinflammation mediated by IL-1β increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. 5, 1–12. https://doi.org/10.1186/1742-2094-5-8
Kumar A., Leinisch F., Kadiiska M.B., Corbett J., Mason R.P. 2016. Formation and implications of alpha-synuclein radical in maneb-and paraquat-induced models of Parkinson’s disease. Mol. Neurobiol. 53: 2983–2994. https://doi.org/10.1007/s12035-015-9179-1
Lakache Z., Hacib H., Aliboudhar H., Toumi M., Mahdid M., Lamrani N., Tounsi H., Kameli, A. 2022. Chemical composition, antidiabetic, anti-inflammatory, antioxidant and toxicity activities, of the essential oil of Fortunella margarita peels. J. Biol. Res-Boll. Soc. 95. https://doi.org/10.4081/jbr.2022.10641
Leal M.C., Casabona J.C., Puntel M., Pitossi, F.J.F.I.C.N. 2013. Interleukin-1β and tumor necrosis factor-α: Reliable targets for protective therapies in Parkinson’s disease? 7, 53. https://doi.org/10.3389/fncel.2013.00053
Lin X., Cao S., Sun J., Lu D., Zhong B., Chun J. 2021. The chemical compositions, and antibacterial and antioxidant activities of four types of citrus essential oils. molecules. 26. https://doi.org/10.3390/molecules26113412
Lou S.N., Lai Y.C., Huang J.D., Ho C.T., Ferng L.H., Chang Y.C. 2015. Drying effect on flavonoid composition and antioxidant activity of immature kumquat. Food Chem. 171. 356–63. https://doi.org/10.1016/j.foodchem.2014.08.119
Luchtman D.W., Shao D., Song C. 2009. Behavior, neurotransmitters and inflammation in three regimens of the MPTP mouse model of Parkinson’s disease. Physiol. Behav. 98: 130–138. https://doi.org/10.1016/j.physbeh.2009.04.021
Lücking C. 2000. Alpha-synuclein and Parkinson’s disease. CMLS. 57: 1894–1908. https://doi.org/10.1007/PL00000671
Magistrelli L., Contaldi E., Comi C. 2021. The impact of SNCA variations and its product alpha-synuclein on non-motor features of Parkinson’s disease. Life. 11: 804. https://doi.org/10.3390/life11080804
Maiti P., Manna J., Dunbar G.L. 2017. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl. Neurodegener. 6: 28. https://doi.org/10.1186/s40035-017-0099-z
Meredith G.E. and Kang U.J. 2006. Behavioral models of Parkinson’s disease in rodents: A new look at an old problem. Mov. Disord. 21: 1595–1606. https://doi.org/10.1002/mds.21010
Mitropoulou G., BardoukI H., Vamvakias M., Panas P., Paraskevas P., Kourkoutas, Y. 2022. Assessment of antimicrobial efficiency of Pistacia lentiscus and Fortunella margarita essential oils against spoilage and pathogenic microbes in ice cream and fruit juices. Microbiol. Res. 13: 667–680. https://doi.org/10.3390/microbiolres13030048
Münchau A. and Bhatia K.P. 2000. Pharmacological treatment of Parkinson’s disease. Postgrad. Med. J. 76: 602–610. https://doi.org/10.1136/pmj.76.900.602
Nemani V.M., Lu W., Berge V., Nakamura K., Onoa B., Lee M.K., Chaudhry F. A., Nicoll R.A., Edwards R.H.J.N. 2010. Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. 65: 66–79. https://doi.org/10.1016/j.neuron.2009.12.023
Nouri A. and Shafaghatlonbar A. 2016a. Chemical constituents and antioxidant activity of essential oil and organic extract from the peel and kernel parts of Citrus japonica Thunb. (kumquat) from Iran. Nat. Prod. Res. 30: 1093–7. https://doi.org/10.1080/14786419.2015.1101692
Nouri A. and Shafaghatlonbar A. 2016b. Chemical constituents and antioxidant activity of essential oil and organic extract from the peel and kernel parts of Citrus japonica Thunb. (kumquat) from Iran. Nat. Prod. Res. 30: 1093–1097. https://doi.org/10.1080/14786419.2015.1101692
Ozcan-Sinir G., Ozkan-Karabacak A., Tamer C.E., Copur O.U. 2018. The effect of hot air, vacuum and microwave drying on drying characteristics, rehydration capacity, color, total phenolic content and antioxidant capacity of Kumquat (Citrus japonica). J. Food Sci. 39: 475–484. https://doi.org/10.1590/fst.34417
Parambi D.G.T., Saleem U., Shah M.A., Anwar F., Ahmad B., Manzar A., Itzaz A., Harilal S., Uddin M.S., Kim H. 2020. Exploring the therapeutic potentials of highly selective oxygenated chalcone based MAO-B inhibitors in a haloperidol-induced murine model of Parkinson's disease. Neurochem. Res. 45: 2786–2799. https://doi.org/10.1007/s11064-020-03130-y
Peng L.W., Sheu M.J., Lin L.Y., Wu C.T., Chiang H.M., Lin W.H., Lee M.C., Chen H.C. 2013. Effect of heat treatments on the essential oils of kumquat (Fortunella margarita Swingle). Food Chem. 136: 532–7. https://doi.org/10.1016/j.foodchem.2012.08.014
Petzinger G.M., Holschneider D.P., Fisher B.E., Mcewen S., Kintz N., Halliday M., Toy W., Walsh J.W., Beeler J., Jakowec M.W. 2015. The effects of exercise on dopamine neurotransmission in Parkinson’s disease: Targeting neuroplasticity to modulate basal ganglia circuitry. Brain Plast. 1: 29–39. https://doi.org/10.3233/BPL-150021
Poewe W., Seppi K., Tanner C.M., Halliday G.M., Brundin P., Volkmann J., Schrag A.E., Lang A.E. 2017. Parkinson disease. Nat. Rev. Dis. Primers. 3: 1–21. https://doi.org/10.1038/nrdp.2017.13
Politis M., Wu K., Molloy S., BAIN, P.G., Chaudhuri K.R., Piccini P. 2010. Parkinson’s disease symptoms: The patient’s perspective. Mov. Disord. 25: 1646–1651. https://doi.org/10.1002/mds.23135
Potterat O. and Hamburger M. 2008. Drug discovery and development with plant-derived compounds. NPs. I: 45–118. https://doi.org/10.1007/978-3-7643-8117-2_2
Rabie O., El-Nashar H.A.S., Majrashi T.A., Al-Warhi T., El Hassab M.A., Eldehna W.M., Mostafa N.M. 2023. Chemical composition, seasonal variation and antiaging activities of essential oil from Callistemon subulatus leaves growing in Egypt. J. Enzyme Inhib. Med. Chem. 38: 2224944. https://doi.org/10.1080/14756366.2023.2224944
Ravina B., Camicioli R., Como P., Marsh L., Jankovic J., Weintraub D., Elm J. 2007. The impact of depressive symptoms in early Parkinson disease. Neurology. 69: 342–347. https://doi.org/10.1212/01.wnl.0000268695.63392.10
Saeed A., Shakir L., Khan M.A., Ali A., ZAIDI A.A. 2017. Haloperidol induced Parkinson’s disease mice model and motor-function modulation with Pyridine-3-carboxylic acid. Biomed. Res. Ther. 4: 1305–1317. https://doi.org/10.15419/bmrat.v4i05.169
Saleem U., Akhtar R., Anwar F., Shah M.A., Chaudary Z., Ayaz M., Ahmad B. 2021a. Neuroprotective potential of Malva neglecta is mediated via down-regulation of cholinesterase and modulation of oxidative stress markers. Metab. Brain Dis. 36: 889–900. https://doi.org/10.1007/s11011-021-00683-x
Saleem U., Gull Z., Saleem A., Shah M.A., Akhtar M.F., Anwar F., Ahmad B., Panichayupakaranant P. 2021b. Appraisal of anti‐Parkinson activity of rhinacanthin‐C in haloperidol‐induced parkinsonism in mice: A mechanistic approach. J. Food Biochem. 45: e13677. https://doi.org/10.1111/jfbc.13677
Saleem U., Khalid S., Chauhdary Z., Anwar F., Shah M.A., Alsharif I., Babalghith A.O., Khayat R.O., Albalawi A.E., Baokbah T.A. 2022. The curative and mechanistic acumen of curcuminoids formulations against haloperidol induced Parkinson’s disease animal model. Metab. Brain Dis. 1–16. https://doi.org/10.1007/s11011-022-01122-1
Saleem U., Raza Z., Anwar F., Chaudary Z., Ahmad B. 2019. Systems pharmacology based approach to investigate the in vivo therapeutic efficacy of Albizia lebbeck (L.) in experimental model of Parkinson’s disease. BMC Complement. Med. Ther. 19: 1–16. https://doi.org/10.1186/s12906-019-2772-5
Saleem U., Shehzad A., Shah S., Raza Z., Shah M.A., Bibi S., Chauhdary, Z., Ahmad B. 2021c. Antiparkinsonian activity of Cucurbita pepo seeds along with possible underlying mechanism. Metab. Brain Dis. 36: 1231–1251. https://doi.org/10.1007/s11011-021-00707-6
Satou T., Miyahara N., Murakami S., Hayashi S., Koike K. 2012. Differences in the effects of essential oil from Citrus junos and (+)-limonene on emotional behavior in mice. J. Essent. Oil Res. 24: 493–500. https://doi.org/10.1080/10412905.2012.705100
Selamoglu-Talas Z., Ozdemir I., Ciftci O., Cakir, O. 2013. Propolis attenuates oxidative injury in brain and lung of nitric oxide synthase inhibited rats. J. Pharm. Care. 45–50.
Shahnawaz M., Mukherjee A., Pritzkow S., Mendez N., Rabadia P., Liu X., Hu B., Schmeichel A., Singer W., Wu G. 2020. Discriminating α-synuclein strains in Parkinson's disease and multiple system atrophy. Nature. 578: 273–277. https://doi.org/10.1038/s41586-020-1984-7
Sureda A., Tejada S., Khan U.M., Selamoglu Z. 2023. An overview of the biological function of curcumin in the processes of oxidative stress, inflammation, nervous system, and lipid levels. Cent. Asian J. Medical Pharm. Sci. Innov. 3: 1–11.
Sveinbjornsdottir S. 2016. The clinical symptoms of Parkinson’s disease. J. Neurochem. 139: 318–324. https://doi.org/10.1111/jnc.13691
Szwajgier D. and Baranowska-Wójcik E. 2019. Terpenes and phenylpropanoids as acetyl- and butyrylcholinesterase inhibitors: A comparative study. Curr. Alzheimer Res. 16: 963–973. https://doi.org/10.2174/1567205016666191010105115
Talas Z.S., Ozdemir I., Yilmaz I., Gok Y., Orun I. 2008. The investigation of the antioxidative properties of the novel synthetic organoselenium compounds in some rat tissues. Exp. Biol. Med. 233: 575. https://doi.org/10.3181/0707-RM-191
Tangamornsuksan W., Lohitnavy O., Sruamsiri R., Chaiyakunapruk N., Norman Scholfield C., Reisfeld B., Lohitnavy M. 2019. Paraquat exposure and Parkinson’s disease: A systematic review and meta-analysis. Arch. Environ. Occup. Health. 74: 225–238. https://doi.org/10.1080/19338244.2018.1492894
Uéda K., Cole G., Sundsmo M., Katzman R., Saitoh T. 1989. Decreased adhesiveness of Alzheimer’s disease fibroblasts: Is amyloid β‐protein precursor involved? Ann. Neurol. 25: 246–251. https://doi.org/10.1002/ana.410250307
Zahoor I., Shafi A., Haq E. 2018. Pharmacological treatment of Parkinson’s disease. Exon Publications. 129–144. https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch7