Antimicrobial resistance of Salmonella spp. recovered from raw chicken meat at abattoirs and retail markets in Jordan

Main Article Content

Hamzah M. Al-Qadiri
Murad A. Al-Holy
Ayed M. Al-Abdallat
Amin N. Olaimat
Mohammed Saleh
Faris Ghalib Bakri
Sameeh M. Abutarbush
Barbara A. Rasco

Keywords

Chicken meat, Salmonella, antimicrobial resistance, multidrug resistance, resistance genes, abattoirs

Abstract

Salmonella is a major causative factor of bacterial foodborne diseases in humans. This study aimed to investigate the antimicrobial vulnerability profiles and the presence of genes of antimicrobial resistance (AMR) among Salmonella spp. recovered from chilled raw chicken meat at chicken abattoirs and local markets in Jordan. Out of 700 samples, a total of 106 (15.14%) isolates tested were positive for Salmonella-(invA) gene: chicken carcasses collected from abattoirs (14.5%, 29/200) and retail markets (16.25%, 65/400) as well as chicken breast collected from retail markets (12.0%, 12/100). More than 98% of the isolates exhibited resistance to at least one antibiotic. Notably, the isolates showed high resistance toward ampicillin (75.5%) and amoxicillin/clavulanic acid (45.3%), sulfafurazole (66.0%), tetracycline (61.3%), and ciprofloxacin (42.5%). There was a lower level of resistance to cefotaxime (24.5%), chloramphenicol (19.8%), imipenem (11.3%), ceftazidime (9.4%), and gentamicin (7.5%). AMR profiling showed that 41.5% (n = 44) of isolates were multidrug resistant (MDR). The occurrence of blaTEM resistance gene (RG) was mostly prominent (92.5% (74/80)) among isolates resistant to ampicillin and those resistant to amoxicillin/clavulanic acid (52.1% (25/48)). Among 65 tetracycline-resistant Salmonella isolates, 89.2% (n = 58) harbored the tet(B) RG, and among 70 sulfonamide-resistant Salmonella spp., 38.6% (27/70) and 90.0% (63/70) of resistant isolates harbored sul1 and sul2 RG, respectively. The obtained results demonstrate the necessity to strictly control the usage of antibiotics in poultry to manage MDR Salmonella infections.

Abstract 163 | PDF Downloads 74 XML Downloads 5 HTML Downloads 0

References

Adesiji Y.O., Deekshit V.K., Karunasagar I. 2014. Antimicrobial resistant genes associated with Salmonella spp. isolated from human, poultry, and seafood sources. Food Sci. Nut. 2(4):436–442. 10.1002/fsn3.119

Ahaduzzamana M., Groves P.J., Walkden-Browna S.W., Gerber P.F. 2021. A molecular based method for rapid detection of Salmonella spp. in poultry dust samples. MethodsX. 8:101356. 10.1016/j.mex.2021.101356

Akil L., and Ahmad H.A. 2019. Quantitative risk assessment model of human Salmonellosis resulting from consumption of broiler chicken. Diseases. 7(19):7010019. 10.3390/diseases7010019

Alcaine S.D., Warnick L.D., Wiedmann M. 2007. Antimicrobial resistance in nontyphoidal Salmonella. J. food protect. 70(3):780–790. 10.4315/0362-028X-70.3.780

Al-Qadiri H.M., Lin M., Al-Holy M.A., Cavinato A.G., Rasco B.A. 2008. Detection of sublethal thermal injury in Salmonella enterica serotype Typhimurium and Listeria monocytogenes using Fourier transform Infrared (FT-IR) spectroscopy (4000 to 600 cm−1). J. Food Sci. 73(2):M54–M61. 10.1111/j.1750-3841.2007.00640.x

Borges K.A., Furian T.Q., Souza S.N., Salle C.T.P., Moraes H.L.S., Nascimento V.P. 2019. Antimicrobial resistance and molecular characterization of Salmonella enterica serotypes isolated from poultry sources in Brazil. Braz. J. Poultry Sci. 21(1):1–8. 10.1590/1806-9061-2018-0827

Boubendir S., Arsenault J., Quessy S., Thibodeau A., Fravalo P., Thériault W.P., et al. 2021. Salmonella contamination of broiler chicken carcasses at critical steps of the slaughter process and in the environment of two slaughter plants: Prevalence, genetic profiles, and association with the final carcass status. J. Food Protect. 84(2):321–332. 10.4315/JFP-20-250

Carattoli A., García-Fernández A., Varesi P., Fortini D., Gerardi S., Penni A., et al. 2008. Molecular epidemiology of Escherichia coli producing extended-spectrum beta-lactamases isolated in Rome, Italy. J. Clin. Microbiol. 46(1):103–108. 10.1128/jcm.01542-07

Castro-Vargas R.E., Herrera-Sánchez M.P., Rodríguez-Hernández R., Rondón-Barragán I.S. 2020. Antibiotic resistance in Salmonella spp. isolated from poultry: A global overview. Vet. World 13(10):2070–2084. 10.14202/vetworld.2020.2070-2084

Centers for Disease Control and Prevention (CDC). 2024. Salmonella. Available from: https://www.cdc.gov/salmonella/index.html (Accessed October 1, 2024).

Centers for Disease Control and Prevention (CDC). 2019. Antibiotic resistance threats in the United States. Available from: https://www.cdc.gov/antimicrobial-resistance/media/pdfs/2019-ar-threats-report-508.pdf (Accessed October 3, 2024).

Chai S.J., Cole D., Nisler A., Mahon B.E., 2017. Poultry: The most common food in outbreaks with known pathogens, United States, 1998–2012. Epidemiol. Infect. 145(2):316–325. 10.1017/S0950268816002375

Chen Z., and Jiang X. 2014. Microbiological safety of chicken litter or chicken litter-based organic fertilizers: A review. Agriculture. 4:1–29. https://www.mdpi.com/2077-0472/4/1/1

Chon J.W., Jung H.I., Kuk M., Kim Y.J., Seo K.H., Kim S.K., 2015. High occurrence of extended-spectrum β-lactamase-producing Salmonella in broiler carcasses from poultry slaughterhouses in South Korea. Foodborne Pathog. Dis. 12(3):190–196. 10.1089/fpd.2014.1847

Clinical & Laboratory Standards Institute. 2020. Performance standards for antimicrobial susceptibility testing. 30th ed. Wayne, P.A.: Clinical and Laboratory Standards Institute. CLSI Supplement, M100. https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf

Costa D., Poeta P., Saenz Y., Vinue L., Rojo-Bezares B., Jouini A., et al. 2006. Detection of Escherichia coli harbouring extended-spectrum β-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. J. Antimicrob. Chemother. 58(6):1311–1312. 10.1093/jac/dkl415

Cunha-Neto A.D., Carvalho L.A., Carvalho R.C.T., dos Prazeres Rodrigues D., Mano S.B., Figueiredo E.E.S., et al. 2018. Salmonella isolated from chicken carcasses from a slaughterhouse in the state of Mato Grosso, Brazil: Antibiotic resistance profile, serotyping, and characterization by repetitive sequence-based PCR system. Poultry Sci. 97(4):1373–1381. 10.3382/ps/pex406

Dadgostar P. 2019. Antimicrobial resistance: Implications and costs. Infection Drug Resist. 12:3903–3910. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929930/

Deekshit V.K., Kumar B.K., Rai P., Srikumar S., Karunasagar I., Karunasagar I. 2012. Detection of class 1 integrons in Salmonella Weltevreden and silent antibiotic resistance genes RG in some seafood-associated nontyphoidal isolates of Salmonella in southwest coast of India. J. Appl. Microbiol. 112(6):1113–1122. 10.1111/j.1365-2672.2012.05290.x

Dewey-Mattia D., Manikonda K., Hall A.J., Wise M.E., Crowe S.J. 2018. Surveillance for foodborne disease outbreaks—United States, 2009–2015. MMWR Surveill. Summ. 67(10):1–11. https://www.cdc.gov/mmwr/volumes/67/ss/ss6710a1.htm

Dierikx C., van Essen-Zandbergen A., Veldman K., Smith H., Mevius D., 2010. Increased detection of extended spectrum beta-lactamase producing Salmonella Enterica and Escherichia coli isolates from poultry. Veterinary Microbiology. 145(3–4):273–278. 10.1016/j.vetmic.2010.03.019

Food and Agriculture Organization of the United Nations, and World Health Organization. 2002. Codex Alimentarius Commission: Codex Coordinating Committee for the Near East, second session. Working paper on elaboration of a regional standard for microbiological levels in foods (prepared by Egypt). CX/NEA 03/16. Available from: https://www.fao.org/fileadmin/user_upload/gmfp/docs/Codex%20working%20paper%20on%20elaboration%20of%20a%20regional%20standard%20for%20microbiological%20levels%20in%20foodstuffs%20(CX-NEA%2003-16)%201.pdf (Accessed October 2, 2024).

Food and Drug Administration (FDA). 2014–2015 Retail meat interim report. 2017. Available from: https://www.fda.gov/media/97546/download (Accessed October 3, 2024).

Furukawa I., Ishihara T., Teranishi H., Saito S., Yatsuyanagi J., Wada E., et al. 2017. Prevalence and characteristics of Salmonella and Campylobacter in retail poultry meat in Japan. Jpn. J. Infect. Dis. 70(3):239–247. 10.7883/yoken.JJID.2016.164

Galán-Relaño, Á., Díaz A.V., Lorenzo B.H., Gómez-Gascón L., Mena M.Á., Carrasco E., et al. 2023. Salmonella and salmonellosis: An update on public health implications and control strategies. Animals. 13(23):3666. 10.3390/ani13233666

Gebreyes W.A., Thakur S., Morrow A.W.E., 2006. Comparison of prevalence, antimicrobial resistance, and occurrence of multidrug-resistant Salmonella in antimicrobial-free and conventional pig production. J. Food Protect. 69(4):743–748. 10.4315/0362-028X-69.4.743

Gharaibeh M.H., Lafi S.Q., Habib Allah A.M., Al Qudsi A.M., 2024. Occurrence, virulence, and resistance genes in Salmonella enterica isolated from an integrated poultry company in Jordan. Poultry Sci. 103(6):103733. 10.1016/j.psj.2024.103733

Golden C.E., and Mishra A., 2020. Prevalence of Salmonella and Campylobacter spp. in alternative and conventionally produced chicken in the United States: A systematic review and meta-analysis. J. Food Protect. 83(7):1181–1197. 10.4315/JFP-19-538

Hasman H., Mevius D., Veldman K., Olesen I., Aarestrup F.M., 2005. β-lactamases among extended-spectrum β-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in the Netherlands. J. Antimicrob. Chemother. 56(1):115–121. 10.1093/jac/dki190

Hudzicki J., 2009. Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology. Available from: https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Protocol-pdf.pdf

Huovinen P., Sundström L., Sundström S., Gö G., Swedberg G., Sköld O., et al. 1995. Trimethoprim and sulfonamide resistance. Antimicrob. Agents Chemother. 39(2):279–289. 10.1128/aac.39.2.279

ISO. 2013. ISO 4833-2:2013-Microbiology of the food Chain-Horizontal method for the enumeration of microorganisms. Part 2: Colony count at 30°C by the surface plating technique. Geneva, Switzerland: International Organization for Standardization.

ISO. 2015. ISO 17604:2015-Microbiology of the food Chain-Carcass sampling for microbiological analysis, Edition 2. Geneva, Switzerland: International Organization for Standardization.

ISO. 2015. ISO/TS 17728:2015-Microbiology of the food Chain-Sampling techniques for microbiological analysis of food and feed samples, Edition 1. Geneva, Switzerland: International Organization for Standardization.

ISO. 2017. ISO 6579-1:2017-Microbiology of the food Chain-Horizontal method for the detection, enumeration and serotyping of Salmonella. Geneva, Switzerland: International Organization for Standardization.

Lai J., Wu C., Wu C., Qi J., Wang Y., Wang H., Liu Y., Shen J. 2014. Serotype distribution and antibiotic resistance of Salmonella in food-producing animals in Shandong Province of China, 2009 and 2012. Int. J. Food Microbiol. 180:30–38. 10.1016/j.ijfoodmicro.2014.03.030

Li R., Lai J., Wang Y., Liu S., Li Y., Liu K., et al. 2013. Prevalence and characterization of Salmonella species isolated from pigs, ducks and chickens in Sichuan Province, China. Int. J. Food Microbiol. 163(1):14–18. 10.1016/j.ijfoodmicro.2013.01.020

Li X.Z., Mehrotra M., Ghimire S., Adewoye L. 2007. β-lactam resistance and β-lactamases in bacteria of animal origin. Vet. Microbiol. 121(3–4):197–214. 10.1016/j.vetmic.2007.01.015

Liljebjelke K.A., Hofacre C.L., White D.G., Ayers S., Lee M.D., Maurer J.J. 2017. Diversity of antimicrobial resistance phenotypes in Salmonella isolated from commercial poultry farms. Front. Vet. Sci. 4:96. 10.3389/fvets.2017.00096

McMillan E.A., Gupta S.K., Williams L.E., Jové T., Hiott L.M., Woodley T.A., et al. 2019. Antimicrobial resistance genes, cassettes, and plasmids present in Salmonella enterica associated with United States food animals. Front. Microbiol. 10:832. 10.3389/fmicb.2019.00832

Michaelis C., and Grohmann E. 2023. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics. 12:328. 10.3390/antibiotics12020328

Moawad A.A. Hotzel H., Awad O., Tomaso H., Neubauer H., et al. 2017. Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathogens. 9:57. 10.1186/s13099-017-0206-9

Moe A.Z., Paulsen P., Pichpol D., Fries R., Irsigler H., Baumann M.P.O., et al. 2017. Prevalence and antimicrobial resistance of Salmonella isolates from chicken carcasses in retail markets in Yangon, Myanmar. J. Food Prot. 80(6):947–951. 10.4315/0362-028X.JFP-16-407

Mujahid S., Hansen M., Miranda R., Newsom-Stewart K., Rogers J.E. 2023. Prevalence and antibiotic resistance of Salmonella and Campylobacter isolates from raw chicken breasts in retail markets in the United States and comparison to data from the plant level. Life. 13(3):642. 10.3390/life13030642

Mukherjee S., Anderson C.M., Mosci R.E., Newton D.W., Lephart P., Salimnia H., et al. 2019. Increasing frequencies of antibiotic resistant non-typhoidal Salmonella infections in Michigan and risk factors for disease. Front. Med. 6:250. 10.3389/fmed.2019.00250

Nair D.V.T., Venkitanarayanan K., Johny A.K. 2018. Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods. 7(10):167. 10.3390/foods7100167

National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS): Antimicrobial Resistance Facts. 2024. Available from: Antimicrobial Resistance Facts | NARMS | CDC. Accessed October 1, 2024.

National Antimicrobial Resistance Monitoring System for Enteric Bacteria., 2016–2017 NARMS Integrated Report. 2017. Available from: https://www.fda.gov/animal-veterinary/national-antimicrobial-resistance-monitoring-system/2016-2017-narms-integrated-summary. Accessed October 2, 2024.

Pavelquesi S.L.S., de Oliveira Ferreira A.C.A., Rodrigues L.F.S., Silva C.M.S., Silva I.C.R., Orsi D.C., 2023. Prevalence and antimicrobial resistance of Salmonella spp. isolated from chilled chicken meat commercialized at retail in Federal District, Brazil. J. Food Prot. 86(9):100130. 10.1016/j.jfp.2023.100130

Pavelquesi S.L.S., de Oliveira Ferreira A.C.A., Rodrigues A.R.M., de Souza Silva C.M., Orsi D.C., da Silva I.C.R. 2021. Presence of tetracycline and sulfonamide resistance genes in Salmonella spp.: Literature review. Antibiotics. 10:1314. 10.3390/antibiotics10111314

Perin A.P., Martins B., Barreiros M., Yamatogi R.S., Nero L.A., Dos Santos Bersot L. 2020. Occurrence, quantification, pulse types, and antimicrobial susceptibility of Salmonella sp. isolated from chicken meat in the state of Paraná, Brazil. Braz. J. Microbiol. 51(1):335–345. 10.1007/s42770-019-00188-x

Punchihewage-Don A.J., Schwarz J., Diria A., Bowers J., Parveen S. 2024., Prevalence and antibiotic resistance of Salmonella in organic and non-organic chickens on the Eastern Shore of Maryland, USA. Front. Microbiol. 14:1272892. 10.3389/fmicb.2023.1272892

Rahn, K., De Grandis, S.A., Clarke, R.C., McEwen, S.A., Galan, J.E., Ginocchio, C., et al. 1992. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes. 6:271–279. https://pubmed.ncbi.nlm.nih.gov/1528198/

Roberts M.C., and Schwarz S. 2016. Tetracycline and phenicol resistance genes and mechanisms: Importance for agriculture, the environment, and humans. J. Environ. Qual. 45(2):576–592. 10.2134/jeq2015.04.0207

Sabry M.A., Abdel-Moein K.A., Abdel-Kader F., Hamza E. 2020. Extended-spectrum β-lactamase-producing Salmonella serovars among healthy and diseased chickens and their public health implication. J. Global Antimicrob. Resist. 22:742–748. 10.1016/j.jgar.2020.06.019

Smadi H., and Sargeant J.M. 2013. Quantitative risk assessment of human salmonellosis in Canadian broiler chicken breast from retail to consumption. Risk Anal. 33(2):232–248. 10.1111/j.1539-6924.2012.01841.x

Sodagari H.R., Mashak Z., Ghadimianazar A. 2015. Prevalence and antimicrobial resistance of Salmonella serotypes isolated from retail chicken meat and giblets in Iran. J. Infect. Dev. Ctries. 9:463–469. 10.3855/jidc.5945

Stasiak M., Maćkiw E., Kowalska J., Kucharek K., Postupolski J. 2021. Silent genes: Antimicrobial resistance and antibiotic production. Polish J. Microbiol. 70(4):421–429. 10.33073/pjm-2021-040

Statistical Analysis System. 2011. The SAS System for Windows. Release 9.2. SAS Institute Inc., Cary, NC, USA.

Thakur S., Tadesse D.A., Morrow M., Gebreyes W.A. 2007. Occurrence of multidrug resistant Salmonella in antimicrobial-free (ABF) swine production systems. Vet. Microbiol. 125(3–4):362–367. 10.1016/j.vetmic.2007.05.025

Vinueza-Burgos C., Cevallos M., Ron-Garrido L., Bertrand S., De Zutter L. 2016. Prevalence and diversity of Salmonella serotypes in Ecuadorian broilers at slaughter age. PLoS ONE. 11(7):e0159567. 10.1371/journal.pone.0159567

Vo A.T.T., van Duijkeren E., Fluit A.C., Wannet W.J.B., Verbruggen A.J., Maas H.M.E., et al. 2006. Antibiotic resistance, integrons and Salmonella genomic island 1 among nontyphoidal Salmonella serovars in the Netherlands. Int. J. Antimicrob. Agents. 28(3):172–179. 10.1016/j.ijantimicag.2006.05.027

Voss-Rech D., Potter L., Vaz C.S., Pereira D.I., Sangioni L.A., Vargas Á.C., et al. 2017. Antimicrobial resistance in nontyphoidal Salmonella isolated from human and poultry-related samples in Brazil: 20-year meta-analysis. Foodborne Pathog. Dis. 14(2):116–124. 10.1089/fpd.2016.2228

Yaqoob E., Hussain I., Rahman I.U. 2007. Molecular characterization by using random amplified polymorphic DNA (RAPD) analysis of Salmonella Enteritidis isolates recovered from avian and human sources. Pak. Vet. J. 27(2):102–104. https://core.ac.uk/download/pdf/27053475.pdf

Zhu Y., Lai H., Zou L., Yin S., Wang C., Han X., et al. 2017. Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China. Int. J. Food Microbiol. 259:43–51.