Scale-up of spirulina protein extraction process for pilot reactor design
Main Article Content
Keywords
agitators, dimensionless numbers, protein, reactor, scale-up, spirulina
Abstract
This investigation focuses on designing a 400 L pilot reactor for extracting proteins from Spirulina using the method of scale-up dimensionless numbers. The first step was to determine the factors to study the extraction at 0.5 L, such as temperature, time, and agitation. Then, by using statistical methods, we identified the optimal extraction yield point. Subsequently, at the 4 L scale, we tested different impellers to find specific dimensionless number ratios, which were useful in designing the 400 L reactor, in addition to estimating stirring speeds for maximum protein extraction. The next step in this process is the isolation of protein.
References
Başbuğ, S., Papadakis, G., & Vassilicos, J. C. (2017). DNS investigation of the dynamical behaviour of trailing vortices in unbaffled stirred vessels at transitional Reynolds numbers. Physics of Fluids, 29(6). https://doi.org/10.1063/1.4983494
Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210. https://doi.org/10.1016/J.BIOTECHADV.2006.11.002
Benelhadj, S., Fejji, N., Degraeve, P., Attia, H., Ghorbel, D., & Gharsallaoui, A. (2016). Properties of lysozyme/Arthrospira platensis (Spirulina) protein complexes for antimicrobial edible food packaging. Algal Research, 15, 43–49. https://doi.org/10.1016/j.algal.2016.02.003
Bonem, J. M. (2018). Chemical Projects Scale Up: How to go from Laboratory to Commercial. Chemical Projects Scale Up: How to Go from Laboratory to Commercial, 1–212. https://doi.org/10.1016/C2016-0-02123-X
de Boer, K., Moheimani, N. R., Borowitzka, M. A., & Bahri, P. A. (2012). Extraction and conversion pathways for microalgae to biodiesel: A review focused on energy consumption. Journal of Applied Phycology, 24(6), 1681–1698. https://doi.org/10.1007/S10811-012-9835-Z/METRICS
Dulekgurgen, E. (2005). Lowry Proteins Protocol.
Ferrari, L., Panaite, S. A., Bertazzo, A., & Visioli, F. (2022). Animal- and Plant-Based Protein Sources: A Scoping Review of Human Health Outcomes and Environmental Impact. Nutrients, 14, 5115, 14(23), 5115. https://doi.org/10.3390/NU14235115
Flores Ramos, L., Ruiz Soto, A., clave, P., & Behnken, B. (2017). implementación de una metodología analítica para la cuantificación de proteínas en la microalga Arthrospira platensis implementation of analytical methodology for quantification of proteins in Arthrospira platensis microalgae. Revista de la Sociedad Química del Perú, 83(4).
Harmsen, J. (2019). Industrial Process Scale-up: A Practical Innovation Guide from Idea to Commercial Implementation. Industrial Process Scale-up: A Practical Innovation Guide from Idea to Commercial Implementation, 1–130. https://doi.org/10.1016/C2018-0-00308-4
Harris, C. K., Roekaerts, D., Rosendal, F. J. J., Buitendijk, F. G. J., Daskopoulos, P., Vreenegoor, A. J. N., & Wang, H. (1996). Computational fluid dynamics for chemical reactor engineering. Chemical Engineering Science, 51(10), 1569–1594. https://doi.org/10.1016/0009-2509(96)00021-8
John, T. P., Fonte, C. P., Kowalski, A., & Rodgers, T. L. (2023). The effect of axial impeller geometry on the link between power and flow numbers. AIChE Journal, 69(3), e17871. https://doi.org/10.1002/AIC.17871
Kaiser, S. C., Werner, S., Jossen, V., Kraume, M., & Eibl, D. (2017). Development of a method for reliable power input measurements in conventional and single-use stirred bioreactors at laboratory scale. Engineering in Life Sciences, 17(5), 500–511. https://doi.org/10.1002/elsc.201600096
Kumar, L., Chhogyel, N., Gopalakrishnan, T., Hasan, M. K., Jayasinghe, S. L., Kariyawasam, C. S., Kogo, B. K., & Ratnayake, S. (2022). Climate change and future of agri-food production. Future Foods: Global Trends, Opportunities, and Sustainability Challenges, 49–79. https://doi.org/10.1016/B978-0-323-91001-9.00009-8
Kusmayadi, A., Leong, Y. K., Yen, H. W., Huang, C. Y., & Chang, J. S. (2021). Microalgae as sustainable food and feed sources for animals and humans – Biotechnological and environmental aspects. Chemosphere, 271, 129800. https://doi.org/10.1016/J.CHEMOSPHERE.2021.129800
Lupatini, A. L., Colla, L. M., Canan, C., & Colla, E. (2017). Potential application of microalga Spirulina platensis as a protein source. Journal of the Science of Food and Agriculture, 97(3), 724–732. https://doi.org/10.1002/jsfa.7987
Ma, Z. (2014). Impeller power draw across the full Reynolds number spectrum. Graduate Theses and Dissertations. https://ecommons.udayton.edu/graduate_theses/740
Makkawi, Y. T. (2014). Reactor design and its impact on performance and products. In Wiley Blackwell (6th ed., pp. 61–97). https://doi.org/10.1002/9781118693643.CH3
Marzorati, S., Schievano, A., Idà, A., & Verotta, L. (2020). Carotenoids, chlorophylls and phycocyanin from Spirulina: Supercritical CO2 and water extraction methods for added value products cascade. Green Chemistry, 22(1), 187–196. https://doi.org/10.1039/c9gc03292d
McCabe, W., Smith, J., & Harriott, P. (2004). Unit operations of chemical engineering (7th ed.). McGraw-Hill Chemical Engineering Series.
Otálvaro-Marín, H. L., & Machuca-Martínez, F. (2020). Sizing of reactors by charts of Damköhler’s number for solutions of dimensionless design equations. Heliyon, 6(11), e05386. https://doi.org/10.1016/J.HELIYON.2020.E05386
Paul, E. L. ., Atiemo-Obeng, V. A.., & Kresta, S. M. . (2004). Handbook of industrial mixing : science and practice. 1377.
Pericleous, K., & Patel, M. K. (1987). The Modelling of Tangential and Axial Agitators in Chemical Reactors. https://www.researchgate.net/publication/233784569
Ramírez-Rodrigues, M. M., Estrada-Beristain, C., Metri-Ojeda, J., Pérez-Alva, A., & Baigts-Allende, D. K. (2021). Spirulina platensis protein as sustainable ingredient for nutritional food products development. Sustainability (Switzerland), 13(12). https://doi.org/10.3390/su13126849
Rausch, T. (1981). The The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I: Comparison of methods for extracting protein.
Reisman, H. B. (1993). Problems in Scale-Up of Biotechnology Production Processes. In Critical Reviews in Biotechnology, 13,(3).
Richmond, A. (2003). Handbook of Microalgal Culture. Handbook of Microalgal Culture. https://doi.org/10.1002/9780470995280
Safi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Research, 3(1), 61–65. https://doi.org/10.1016/j.algal.2013.12.004
Tatterson, G. B. (2002). Process scaleup and design. 188. https://books.google.com/books/about/Process_Scaleup_and_Design.html?hl=es&id=wrAJAAAACAAJ
Tavanandi, H. A., Mittal, R., Chandrasekhar, J., & Raghavarao, K. S. M. S. (2018). Simple and efficient method for extraction of C-Phycocyanin from dry biomass of Arthospira platensis. Algal Research, 31, 239–251. https://doi.org/10.1016/j.algal.2018.02.008
Thevarajah, B., Nishshanka, G. K. S. H., Premaratne, M., Nimarshana, P. H. V, Nagarajan, D., Chang, J. S., & Ariyadasa, T. U. (2022). Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochemical Engineering Journal, 185. https://doi.org/10.1016/j.bej.2022.108541
Towler, G., & Sinnott, R. (2021). Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design, 1–1027. https://doi.org/10.1016/B978-0-12-821179-3.01001-3
Xie, X., Samaei, A., Guo, J., Liu, W. K., & Gan, Z. (2022). Data-driven discovery of dimensionless numbers and governing laws from scarce measurements. Nature Communications, 13(1), 1–11. https://doi.org/10.1038/s41467-022-35084-w