Development and optimization of ultrasonic extraction of total phenols from fresh peel of Pouteria caimito and its bioactivity evaluation

Main Article Content

Jiaojiao Li
Zheng Jiang
Xinxin Li
Xun Gao
Jinyang Shen
Qiang Liu
Ruibo Xu

Keywords

antioxidant activity; network pharmacology; Pouteria caimito; total phenols; ultrasound extraction; UHPLC-HRMS

Abstract

This paper used peel, a by-product of Pouteria caimito, as raw material to extract total phenols from peel by ultrasonic. To avoid the damage of polyphenol oxidase to the total phenolic content (TPC) of the pericarp, the effects of different pretreatment methods on the yield of the total phenolic content of the pericarp were discussed in the Pre-experiment. The optimal pretreatment conditions were determined as follows: blanching the peel for 3 min, adding Na2SO3 (1 %, solid-liquid ratio 1:1); Under these conditions, the TPC of peel increased from 4.022 ± 0.02 mg/g without treatment to 10.40 ± 0.20 mg/g. Based on single-factor experiments and response surface methodology, the optimal extraction process was determined as follows: EtOH concentration 13 %, solid-liquid ratio 1:30, ultrasonic time 50 min, extraction temperature 29 ℃, extraction for 4 times; Under this condition, the TPC in P. caimito peel was 17.08 ± 0.39 mg/g. The purity of the total phenol extract reached 30 % after purification by AB-8 resin. In vitro activity analysis showed that the purified had a scavenging rate of 96.05% and 100% for DPPH and ABTS at a mass concentration of 1.75 mg/mL and 3.75 mg/mL, respectively, at concentrations of 4 mg/mL and 5.5 mg/mL, it demonstrated a complete inhibitory effect on tyrosinase and acetylcholinesterase. Utilizing UPLC-HRMS, 56 compounds were successfully identified within the purified product. Three key compounds (Quercetin, Ferulic acid and Isorhamnetin) were screened through network pharmacology, and it was predicted that these compounds could treat Alzheimer's disease through the cholinergic synaptic pathway. Molecular docking technology further revealed the effects of CPP on AChE. This study presents a promising avenue for developing natural antioxidants, TYR inhibitors, and AChE inhibitors in both the food and pharmaceutical industries.

Abstract 458 | PDF Downloads 158 XML Downloads 59 HTML Downloads 0

References

Abreu, M., De, N.P., Sales, P., De, O.F. and Nascimento, A. 2019. Antimicrobial and antidiarrheal activities of methanolic fruit peel extract of Pouteria caimito. Pharmacog J. 11(5):944–950. https://doi.org/10.5530/pj.2019.11.150
Aghdam, M.S., Luo, Z., Li, L., Jannatizadeh, A., Fard, J.R. and Pirzad, F. 2020. Melatonin treatment maintains the nutraceutical properties of pomegranate fruits during cold storage. Food Chem. 303:125385. https://doi.org/10.1016/j.foodchem.2019.125385
Ajala, A., Uzairu, A., Shallangwa, G.A. and Abechi, S.E. 2022. Structure-based drug design of novel piperazine containing hydrazone derivatives as potent Alzheimer inhibitors: molecular docking and drug kinetics evaluation. Brain Disord. 7:100041. https://doi.org/10.1016/j.dscb.2022.100041
Arif, A.B., Susanto, S., Matra, D.D. and Widayanti, S.M. 2022. Identification of volatile compounds in several parts of Abiu (Pouteria Caimito). IOP Conf Ser Earth Environ Sci. 1024(1):012066. https://doi.org/10.1088/1755-1315/1024/1/012066
Benito-Román, Ó., Sanz, M.T., Melgosa, R., Paz, E.D., Escudero, I. and Beltran, S. 2019. Studies of polyphenol oxidase inactivation by means of high pressure carbon dioxide (HPCD). J Supercrit Fluids. 147:310–321. https://doi.org/10.1016/j.supflu.2018.07.026
Carcelli, M., Rogolino, D., Bartoli, J., Pala, N., Compari, C., Ronda, N., Bacciottini, F., Incerti, M. and Fisicaro, E. 2020. Hydroxyphenyl thiosemicarbazones as inhibitors of mushroom tyrosinase and antibrowning agents. Food Chem. 303:125310. https://doi.org/10.1016/j.foodchem.2019.125310
Castro-Godoy, W.D., Schmidt, L.C. and Argüello, J.E. 2019. A green alternative for the conversion of arylboronic acids/esters into phenols promoted by a reducing agent, sodium sulfite. Eur J Org Chem. 2019(19):3035–3039. https://doi.org/10.1002/ejoc.201900311
Chai, W., Pan, Q.X., Bai, Q.H., Wu, Y.F., Wei, W.S., Wang, L.J. and Zhu, D. 2023. Condensed tannins from the leave of Dimocarpus longan Lour. exhibit anti-tyrosinase, anti-melanogenesis, anti-browning, anti-α-glucosidase, and anti-glycation activities. Ind Crops Prod. 206:117605. https://doi.org/10.1016/j.indcrop.2023.117605
Chaudhary, S.K., Keithellakpam, O.S., Lalvenhimi, S., Chanda, J., Bhowmick, S., Kar, A., Nameirakpam, B., Bhardwaj, P.K., Sharma, N., Rajashekar, Y., Devi, S.I. and Mukherjee, P.K. 2023. Chemo diversity of ginger—a potent crop in Manipur and its acetylcholinesterase (AChE) inhibitory potential. Biochem Syst Ecol. 106:104560. https://doi.org/10.1016/j.bse.2022.104560
Cho, Y.K. and Ahn, H.Y.E.K. 1999. Purification and characterization of polyphenol oxidase from potato: II. inhibition and catalytic mechanism. J Food Biochem. 23(6):593–605. https://doi.org/10.1111/j.1745-4514.1999.tb00588.x
https://doi.org/10.1111/j.1745-4514.1999.tb00587.x
Coronel, R.E., Sotto, R.C., Dela Cruz, F.S., Jr. and Banasihan, I.G. 1998. Note: introduction, evaluation and propagation of Abiu (Pouteria caimito [Ruiz and Favan] Radlk.). Philipp Agric Sci. 81(3–4):168–175. Journal Article. 3442. https://www.ukdr.uplb.edu.ph/journal-articles/3442
Daina, A., Michielin, O. and Zoete, V. 2019. Swiss target prediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 47(W1):W357–W364. https://doi.org/10.1093/nar/gkz382
Di Trana, A., Brunetti, P., Giorgetti, R., Marinelli, E., Zaami, S., Busardò, F.P. and Carlier, J. 2021. In silico prediction, LC-HRMS/MS analysis, and targeted/untargeted data-mining workflow for the profiling of phenylfentanyl in vitro metabolites [J]. Talanta. 235:122740. https://doi.org/10.1016/j.talanta.2021.122740
Falguera, V., Pagán, J., Garza, S., Garvín, A. and Ibarz, A. 2012. Inactivation of polyphenol oxidase by ultraviolet irradiation: protective effect of melanins. J Food Eng. 110(2):305–309. https://doi.org/10.1016/j.jfoodeng.2011.04.005
Fazil, M.M., Gul, A. and Jawed, H. 2024. Optimization of silver nanoparticles synthesis via Plackett–Burman experimental design: in vitro assessment of their efficacy against oxidative stress-induced disorders. RSC Adv. 14(29):20809–20823. https://doi.org/10.1039/D4RA02774D
Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O. and Zoete, V. 2014. Swiss target prediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 42:W32–W38. https://doi.org/10.1093/nar/gku293
Guo, L., Tan, D.C., Bao, R.J., Sun, Q., Xiao, K.M., Xu, Y., Wang, J.M and Hua, Y. 2020. Purification and antioxidant activities of polyphenols from Boletus edulis Bull Fr J Food Meas Char. 14:649–657. https://doi.org/10.1007/s11694-019-00311-4
Han, Y., Ma, Z., Wang, X., Sheng, Y.Y. and Liu, Y. 2023. Demethylation of ethanol organosolv lignin by Na2SO3 for enhancing antioxidant performance. Sustain Chem Pharm. 36:101312. https://doi.org/10.1016/j.scp.2023.101312
Leung, W.T.W. and Flores, M. 1961. Food Composition Table for Use in Latin America. US Government Printing Office, Washington, DC.
Leyva, A., Quintana, A., Sánchez, M., Rodríguez, E.N., Cremata, J. and Sánchez, J.C. 2008. Rapid and sensitive anthrone–sulfuric acid evaluation in microplate format to quantify carbohydrate in biopharmaceutical products: method development and validation. Biologicals 36(2):134–141. https://doi.org/10.1016/j.biologicals.2007.09.001
Liang, W., Wang, X., Zhang, L., Jiao, S.Y., Song, H., Sun, J.R. and Wang, D.H. 2024. Changes and biotransformation mechanism of main functional compounds during Kombucha fermentation by the pure cultured tea fungus. Food Chem. 458:140242. https://doi.org/10.1016/j.foodchem.2024.140242
Lim, T.K. 2013. Pouteria caimito. In: Lim, T.K. (Ed.) Edible Medicinal and Non-Medicinal Plants, Vol. 6, Fruits. Springer, Dordrecht, the Netherlands, Chap. 6, pp. 129–132. https://doi.org/10.1007/978-94-007-5628-1_22
Lin, L.Z., Lei, F.F., Sun, D.W., Dong, Y., Yang, B. and Zhao, M. 2012. Thermal inactivation kinetics of Rabdosia serra (Maxim.) Hara leaf peroxidase and polyphenol oxidase and comparative evaluation of drying methods on leaf phenolic profile and bioactivities. Food Chem. 134(4):2021–2029. https://doi.org/10.1016/j.foodchem.2012.04.008
Liu, S.B., Qiao, L.P., He, H.L., Zhang, Q., Chen, X.L., Zhou, W.Z. and Zhang, Y.Z. 2011. Optimization of fermentation conditions and rheological properties of exopolysaccharide produced by deep-sea bacterium Zunongwangia profunda SM-A87. Plos One. 6(11):e26825. https://doi.org/10.1371/journal.pone.0026825
Logesh, R., Prasad, S.R., Chipurupalli, S., Robinson, N. and Mohankumar, S.K. 2023. Natural tyrosinase enzyme inhibitors: a path from melanin to melanoma and its reported pharmacological activities. Biochimica et Biophysica Acta Rev Cancer. 1878(6):188968. https://doi.org/10.1016/j.bbcan.2023.188968
Lu, D., Rege, B., Raw, A., Yang, J.Y., Alam, K., Bode, C., Zhao, L., Faustino, P., Wu, F., Shakleya, D., Nickum, E., Li, B.V., Wang, R., Stier, E., Miezeiewski, B., Patel, R., Boam, A., Lionberger, R., Keire, D. and Yu, L. 2024. Antioxidants had no effects on the in vitro permeability of BCS III model drug substances. J Pharm Sci. 13(9):2708–2714. https://doi.org/10.1016/j.xphs.2024.05.033
Marucci, G., Buccioni, M., Dal Ben, D., Lambertucci, C., Volpini, R. and Amenta, F. 2021. Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology. 190:108352. https://doi.org/10.1016/j.neuropharm.2020.108352
Naseem, Z., Zahid, M., Hanif, M.A., Shahid, M. 2021. Green extraction of ethnomedicinal compounds from Cymbopogon citratus Stapf using the hydrogen-bonded supramolecular network. Sep Sci Technol. 56(9):1520–1533. https://doi.org/10.1080/01496395.2020.1781894
Omar, K.A. and Sadeghi, R. 2022. New chloroacetic acid-based deep eutectic solvents for solubilizing metal oxides. J Mol Liq. 347:118393. https://doi.org/10.1016/j.molliq.2021.118393
Ou, H.Y., Ye, X.P. and Liu, J.H. 2019. Study on the mechanism of peptic colitis in the treatment of ulcerative colitis based on network pharmacology. Chin J Tradit Chin Med. 5:2438–2443.
Pandey, A., Belwal, T., Sekar, K.C., D.Bhatt, I. and S.Rawal, R. 2018. Optimization of ultrasonic-assisted extraction (UAE) of phenolics and antioxidant compounds from rhizomes of Rheum moorcroftianum using response surface methodology (RSM). Ind Crops Prod. 119:218–225. https://doi.org/10.1016/j.indcrop.2018.04.019
Pant, S., Kumar, K.R., Rana, P., Anthwal, T., Ali, M.S., Gupta, M., Chauhan, M. and Nain, S. 2024. Novel substituted pyrimidine derivatives as potential anti-Alzheimer’s agents: synthesis, biological, and molecular docking studies. ACS Chem Neurosci. 15(4):783–797. https://doi.org/10.1021/acschemneuro.3c00662
Qin, Z., Chang, Y.L., Yang, Z.C., Fan, W., Chen, Z.M., Gu, L.B., Qin, Z., Liu, H.M., Zhu, X.L. and Ma, Y.X. 2025. Microwaving plus enzymatic pretreatment of safflower seeds increases the phenolic content and oxidative stability of extracted oil. Food Chem. 464:141831. https://doi.org/10.1016/j.foodchem.2024.141831
Ren, T., Chen, Z., Xie, J., Tan, S.M. and Zhu, Y-P. 2024. Studies on the role of Rosa roxburghii Tratt quercetin in improving intestinal metabolism and the microbiome in mice with Alzheimer's disease. J Funct Foods. 114:106046. https://doi.org/10.1016/j.jff.2024.106046
Rumpf, J., Burger, R. and Schulze, M. 2023. Statistical evaluation of DPPH, ABTS, FRAP, and Folin–Ciocalteu assays to assess the antioxidant capacity of lignins. Int J Biol Macromol. 233:123470. https://doi.org/10.1016/j.ijbiomac.2023.123470
Silva, C.A.M. 2007. Contribuição ao Estudo Químico e Biológico de POUTERIA GARDNERII (Mart. & Miq.) Baehni (Sapotaceae). MSc thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Sukhonthara, S. and Theerakulkait, C. 2012. Inhibitory effect of rice bran extract on polyphenol oxidase of potato and banana. Int J Food Sci Technol. 47(3):482–487. https://doi.org/10.1111/j.1365-2621.2011.02867.x
Tuesta, G., Orbe, P., Merino-Zegarra, C., Rengifo-Salgado, E.L. and Cabanillas, B. 2014. Actividad antioxidante y determinación de compuestos fenólicos del caimito (Pouteria caimito), caimitillo (Chrsophylum sanguinolentum), guava (Inga edulis) y yarina (Phytelephas macrocarpa). Folia Amazónica. 23(1):87–92. https://doi.org/10.24841/fa.v23i1.11
Terefe, N.S., Delon, A., Buckow, R. and Versteeg, C. 2015. Blueberry total phenol oxidase: characterization and the kinetics of thermal and high-pressure activation and inactivation. Food Chem. 188:193–200. https://doi.org/10.1016/j.foodchem.2015.04.040
Tkacz, K., Wojdyło, A., Turkiewicz, I.P., Ferreres, F., Moreno, D.A. and Nowicka, P. 2020. UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophaë rhamnoides L. cultivars. Food Chem. 309:125766. https://doi.org/10.1016/j.foodchem.2019.125766
Ünal, M.Ü. 2007. Properties of polyphenol oxidase from Anamur banana (Musa cavendishii). Food Chem. 100(3):909–913. https://doi.org/10.1016/j.foodchem.2005.10.048
Wang, G.C., He, M., Huang, Y. and Peng, Z.Y. 2023. Synthesis and biological evaluation of new kojic acid-1,3,4-oxadiazole hybrids as tyrosinase inhibitors and their application in the anti-browning of fresh-cut mushrooms. Food Chem. 409:135275. https://doi.org/10.1016/j.foodchem.2022.135275
Wang, W., Pan, Y.A., Zhao, J.J., Wang, Y.H., Yao, Q.P. and Li, S-S. 2024. Development and optimization of green extraction of total phenols in Michelia alba using natural deep eutectic solvents (NADES) and evaluation of bioactivity. Sustain Chem Pharm. 37:101425. https://doi.org/10.1016/j.scp.2023.101425
Wang, Z., Sun, H-Y., Shen, C., Hu, X.P., Gao, J.B., Li, D., Cao, D.S. and Hou, T.J. 2020. Combined strategies in structure-based virtual screening. Phys Chem Chem Phys. 22(6):3149–3159. https://doi.org/10.1039/C9CP06303J
Wu, L., Song, W., Jiang, Y., Dai, Y., Qin, Z.Y., Liu, L.L., Wei, S.D. and Chen, H. 2025. Structural characterization of complex tannins from Euryale ferox fruit peels and their inhibitory mechanisms against tyrosinase activity and melanogenesis. Int J Biol Macromol. 298:139909. https://doi.org/10.1016/j.ijbiomac.2025.139909
Wuyts, N., De Waele, D. and Swennen, R. 2006. Extraction and partial characterization of polyphenol oxidase from banana (Musa acuminata Grande Maine) roots. Plant Physiol Biochem. 44(5–6):308–314. https://doi.org/10.1016/j.plaphy.2006.06.005
Xue, C.X. and Yang, Z.Y. 2015. Landscape Plants: A Pictorial Guide: 680 Ornamental Trees, 2nd edn. Guangdong Science and Technology Press, Guangzhou, China.
Zhang, X., Lian, S., Zhang, Y. and Zhao, Q.C. 2022. Efficacy and safety of donepezil for mild cognitive impairment: a systematic review and meta-analysis. Clin Neurol Neurosurg. 213:107134. https://doi.org/10.1016/j.clineuro.2022.107134
Zhang, M., Zhang, X., Pei, J., Guo, B.L., Zhang, G.S., Li, M.H. and Huang, L.F. 2023. Identification of phytochemical compounds of Fagopyrum dibotrys and their targets by metabolomics, network pharmacology and molecular docking studies. Heliyon. 9(3):e15496. https://doi.org/10.1016/j.heliyon.2023.e14029
Zhao, H.Y., Zhu, H.Y., Tang, Q., Lin, Q., Hao, Y.K., Ou, H.L., Wu, T.Y., Xuan, W.S., Zhang, H.P., Qin, B.F., Zhang, Y.B., Wang, J.H. and Wang, G.C. 2024. Anti-inflammatory and antiviral activities of compounds from the fruit of Pouteria caimito. Cogent Food Agric. 10(1):2298023. https://doi.org/10.1080/23311932.2023.2298023
Zhou, D., Li, L., Wu, Y.W., Fan, J.F. and Ouyang, J. 2015. Salicylic acid inhibits the enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting total phenol oxidase. Food Chem. 171:19–25. https://doi.org/10.1016/j.foodchem.2014.08.115