The relationship between fine structure and physicochemical properties of starches from wheat (Triticum aestivum L.) varieties

Main Article Content

Saddam Mustafa
Haiam O. Elkatry
Mohamed El Oirdi
Chengyi Sun
Zhijie Zhu
Hossam S. El-Beltagi
Abdelrahman R. Ahmed
Xianfeng Du

Keywords

multi-scale structure, physicochemical properties, relationship, wheat starch

Abstract

Considering the impact of geographic location on starch properties, this research investigates the relationship between fine structure and physicochemical properties of starch isolated from three wheat varieties (Pw1, Sw2, and Hw3) cultivated in Pakistan. The starch granules displayed a range of morphologies, including large lenticular and irregularly disk-like forms as well as smaller oval shapes. Among the starches, Sw2 exhibited the lowest amylose content, while Pw1 showed the longest average amylopectin chain length and the highest molecular weight. X-ray diffractometer and 13C solid-state nuclear magnetic resonance analyses revealed typical A-type diffraction patterns in all three starches, with Pw1 having the highest relative crystallinity. FT-IR results indicated that Pw1 possessed the most ordered structure, as reflected by the highest R1047–R1022 ratio. Findings of differential scanning calorimetry showed that Pw1 had an elevated gelatinization temperature, resulting from its high proportion of long amylopectin chains (degree of polymerization [DP] > 37). In contrast, Hw3 displayed the highest peak and setback viscosities because of its substantial proportion of amylopectin short chains. Hw3 also demonstrated the highest water solubility and swelling power because of its high amylose content. All starches exhibited shear-thinning behavior, with Sw2 having the lowest storage modulus in frequency sweep tests. Additionally, Sw2 showed the greatest oil- and water-absorption capacities, which is associated with its low amylose content. Variations in the fine structure of starch account for the distinct physicochemical properties observed among the wheat varieties, playing an essential role in the tailored selection of wheat products based on their characteristics.

Abstract 132 | PDF Downloads 95 HTML Downloads 0 XML Downloads 10

References

Abegunde O.K., Mu T.H., Chen J.W., and Deng F.M., 2013. Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocoll. 33(2):169–177. 10.1016/j.foodhyd.2013.03.005

Ambigaipalan P., Hoover R., Donner E., Liu Q., Jaiswal S., Chibbar R., Nantanga K., and Seetharaman K., 2011. Structure of faba bean, black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Res Int. 44(9):2962–2974. 10.1016/j.foodres.2011.07.006

Anastasiades A., Thanou S., Loulis D., Stapatoris A., and Karapantsios T., 2002. Rheological and physical characterization of pregelatinized maize starches. J Food Eng. 52(1):57–66. 10.1016/S0260-8774(01)00086-3

Ao Z., and Jane J.l., 2007. Characterization and modeling of the A-and B-granule starches of wheat, triticale, and barley. Carbohydr Polym. 67(1):46–55. 10.1016/j.carbpol.2006.04.013

Bashir K., Swer T.L., Prakash K.S., and Aggarwal M., 2017. Physico-chemical and functional properties of gamma irradiated whole wheat flour and starch. Food Sci Technol (LWT). 76:131–139. 10.1016/j.lwt.2016.10.050

Blazek J., Salman H., Rubio A.L., Gilbert E., Hanley T., and Copeland L., 2009. Structural characterization of wheat starch granules differing in amylose content and functional characteristics. Carbohydr Polym. 75(4):705–711. 10.1016/j.carbpol.2008.09.017

Cai L., and Shi Y.-C., 2010. Structure and digestibility of crystalline short-chain amylose from debranched waxy wheat, waxy maize, and waxy potato starches. Carbohy Polym. 79(4):1117–1123. 10.1016/j.carbpol.2009.10.057

Chen Y., Dai G., and Gao Q., 2020. Preparation and properties of granular cold-water-soluble porous starch. Int J Biol Macromol. 144:656–662. 10.1016/j.ijbiomac.2019.12.060

Debon S.J., and Tester R.F., 2000. In vivo and in vitro annealing of starches. Royal Soc Chem (Sp Pub). 251:270–276. 10.1533/9781845698355.4.270

Deng C., Wang B., Jin Y., Yu Y., Zhang Y., Shi S., Wang Y., Zheng M., Yu Z., and Zhou Y., 2023. Effects of starch multiscale structure on the physicochemical properties and digestibility of Radix Cynanchi bungei starch. Int J Biol Macromol. 253:126873. 10.1016/j.ijbiomac.2023.126873

de Souza Fernandes D., Dos Santos T.P.R., Fernandes A.M., and Leonel M., 2019. Harvest time optimization leads to the production of native cassava starches with different properties. Int J Biol Macromol. 132:710–721. 10.1016/j.ijbiomac.2019.03.245

Dos Santos T.P.R., Leonel M., Garcia É.L., do Carmo E.L., and Franco C.M.L., 2016. Crystallinity, thermal and pasting properties of starches from different potato cultivars grown in Brazil. Int J Biol Macromol. 82:144–149. 10.1016/j.ijbiomac.2015.10.091

Du, S.K., Jiang, H., Ai, Y., and Jane J.L., 2014. Physicochemical properties and digestibility of common bean (Phaseolus vulgaris L.) starches. Carbohydr Polym. 108:200–205. 10.1016/j.carbpol.2014.03.004

Flores-Morales A., Jiménez-Estrada M., and Mora-Escobedo R., 2012. Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydr. Polym. 87(1):61–68. 10.1016/j.carbpol.2011.07.011

Glaring M.A., Koch C.B., and Blennow A., 2006. Genotype-specific spatial distribution of starch molecules in the starch granule: a combined CLSM and SEM approach. Biomacromolecules. 7(8):2310–2320. 10.1021/bm060216e

Gunaratne A., Gan R., Wu K., Kong X., Collado L., Arachchi L.V., Kumara K., Pathirana S.M., and Corke H., 2018. Physicochemical properties of mung bean starches isolated from four varieties grown in Sri Lanka. Starch-Stärke. 70(3–4):1700129. 10.1002/star.201700129

Hanashiro I., Abe J.I., and Hizukuri S., 1996. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydr Res. 283:151–159. 10.1016/0008-6215(95)00408-4

Huang J., Wang Z., Fan L., and Ma S., 2022. A review of wheat starch analyses: methods, techniques, structure and function. Int J Biol Macromol. 203:130–142. 10.1016/j.ijbiomac.2022.01.149

Hung P.V., Maeda T., and Morita N., 2007. Study on physicochemical characteristics of waxy and high-amylose wheat starches in comparison with normal wheat starch. Starch-Stärke. 59(3–4):125–131. 10.1002/star.200600577

Karwasra B.L., Gill B.S., and Kaur M., 2017. Rheological and structural properties of starches from different Indian wheat cultivars and their relationships. Int J Food Prop. 20(Sup1):S1093–S1106. 10.1080/10942912.2017.1328439

Kim H.S., and Huber K.C., 2010. Physicochemical properties and amylopectin fine structures of A-and B-type granules of waxy and normal soft wheat starch. J Cereal Sci. 51(3):256–264. 10.1016/j.jcs.2009.11.015

Kizil R., Irudayaraj J., and Seetharaman K., 2002. Characterization of irradiated starches by using FT-Raman and FTIR spectroscopy. J Agric Food Chem. 50(14):3912–3918. 10.1021/jf011652p

Kumar R., and Khatkar B., 2017. Thermal, pasting and morphological properties of starch granules of wheat (Triticum aestivum L.) varieties. J Food Sci Technol. 54:2403–2410. 10.1007/s13197-017-2681-x

Labuschagne M.T., Geleta N., and Osthoff G., 2007. The influence of environment on starch content and amylose to amylopectin ratio in wheat. Starch-Stärke. 59(5):234–238. 10.1002/star.200600542

Lee S., Lee J.H., and Chung H.J., 2017. Impact of diverse cultivars on molecular and crystalline structures of rice starch for food processing. Carbohydr Polym. 169:33–40. 10.1016/j.carbpol.2017.03.091

Li W., Gao J., Wu G., Zheng J., Ouyang S., Luo Q., and Zhang G., 2016a. Physicochemical and structural properties of A-and B-starch isolated from normal and waxy wheat: effects of lipids removal. Food Hydrocol. 60:364–373. 10.1016/j.foodhyd.2016.04.011

Li Z., Kong X., Zhou X., Zhong K., Zhou S., and Liu X., 2016b. Characterization of multi-scale structure and thermal properties of Indica rice starch with different amylose contents. RSC Adv. 6(109):107491–107497. 10.1039/C6RA17922C

Li N., Niu M., Zhang B., Zhao S., Xiong S., and Xie F., 2017. Effects of concurrent ball milling and octenyl succinylation on structure and physicochemical properties of starch. Carbohydr Polym. 155:109–116. 10.1016/j.carbpol.2016.08.063

Li B., Wang Y., Zhu L., Huang C., Zhang Y., Zhao Y., Wu G., and Tan L., 2022. Starch characterizations of two kinds of seedless Artocarpus altilis (Parkinson) Fosberg originated from China. Food Hydrocol. 123:107145. 10.1016/j.foodhyd.2021.107145

Li W., Xiao X., Zhang W., Zheng J., Luo Q., Ouyang S., and Zhang G., 2014. Compositional, morphological, structural and physicochemical properties of starches from seven naked barley cultivars grown in China. Food Res Int. 58:7–14. 10.1016/j.foodres.2014.01.053

Li S., Zhou Y., Liu M., Zhang Y., and Cao S., 2015. Nutrient composition and starch characteristics of Quercus glandulifera Bl. seeds from China. Food Chem. 185:371–376. 10.1016/j.foodchem.2015.03.147

Li G., and Zhu F., 2017. Amylopectin molecular structure in relation to physicochemical properties of quinoa starch. Carbohydr Polym. 164:396–402. 10.1016/j.carbpol.2017.02.014

Li G., and Zhu F., 2018. Rheological properties in relation to molecular structure of quinoa starch. Int J Biol Macromol. 114:767–775. 10.1016/j.ijbiomac.2018.03.039

Li G.H., Ye B.B., Wu J.D., Hou Z.Y., Chu Z. S., Zheng B.H., and Yang Y.Z., 2020. Changing characteristics on contents and forms of nitrogen and phosphorus in sediment during in-situ physical elution. Res Environ Sci. 33(2):392–401. 10.13198/j.issn.1001-6929.2019.06.04

Liu C., Liu L., Li L., Hao C., Zheng X., Bian K., Zhang J., and Wang X., 2015. Effects of different milling processes on whole wheat flour quality and performance in steamed bread making. Food Sci Technol (LWT). 62(1):310–318. 10.1016/j.lwt.2014.08.030

Liu D., Tang W., Xin Y., Yang J., Yuan L., Huang X., Yin J., Nie S., and Xie M., 2020. Comparison on structure and physicochemical properties of starches from Adzuki bean and Dolichos beans. Food Hydrocol. 105:105784. 10.1016/j.foodhyd.2020.105784

Man J., Yang Y., Zhang C., Zhou X., Dong Y., Zhang F., Liu Q., and Wei C., 2012. Structural changes of high-amylose rice starch residues following in vitro and in vivo digestion. J Agric Food Chem. 60(36):9332–9341. 10.1021/jf302966f

Maningat C.C., Seib P.A., Bassi S.D., Woo K.S., and Lasater G.D., 2009. Wheat starch: production, properties, modification and uses. In: Miller J., and Whistler, J. (Eds.) Starch. Chemistry and Technology. Elsevier, Amsterdam, the Netherlands, pp. 441–510. 10.1016/S1082-0132(08)X0009-3

Mishra S., and Rai T., 2006. Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocol. 20(5):557–566. 10.1016/j.foodhyd.2005.01.001

Mitura K., Cacak-Pietrzak G., Feledyn-Szewczyk B., Szablewski T., and Studnicki M., 2023. Yield and grain quality of common wheat (Triticum aestivum L.) depending on the different farming systems (organic vs. integrated vs. conventional). Plants. 12(5):1022. 10.3390/plants12051022

Noda T., Nishiba Y., Sato T., and Suda I., 2003. Properties of starches from several low-amylose rice cultivars. Cereal Chem. 80(2):193–197. 10.1094/CCHEM.2003.80.2.193

Primo-Martin C., Van Nieuwenhuijzen N., Hamer R., and Van Vliet T., 2007. Crystallinity changes in wheat starch during the bread-making process: starch crystallinity in the bread crust. J Cereal Sci. 45(2):219–226. 10.1016/j.jcs.2006.08.009

Rolland-Sabaté A., Sánchez T., Buléon A., Colonna P., Jaillais B., Ceballos H., and Dufour D., 2012. Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources. Food Hydrocol. 27(1):161–174. 10.1016/j.foodhyd.2011.07.008

Rosicka-Kaczmarek J., Makowski B., Nebesny E., Tkaczyk M., Komisarczyk A., and Nita Z., 2016. Composition and thermodynamic properties of starches from facultative wheat varieties. Food Hydrocol. 54:66–76. 10.1016/j.foodhyd.2015.09.014

Salman H., Blazek J., Lopez-Rubio A., Gilbert E.P., Hanley T., and Copeland L., 2009. Structure–function relationships in A-and B-granules from wheat starches of similar amylose content. Carbohydr Polym. 75(3):420–427. 10.1016/j.carbpol.2008.08.001

Schirmer M., Höchstötter A., Jekle M., Arendt E., and Becker T., 2013. Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocol. 32(1):52–63. 10.1016/j.foodhyd.2012.11.032

Seib P.A., Steele J.L., and Chung O.K., 1997. Wheat starch as a quality determinant. In: Proceedings, International Wheat Quality Conference, May 18–22, Manhattan, KS. Grain Marketing and Production Research Center, Manhattan, KS, pp. 61–82.

Sevenou O., Hill S., Farhat I., and Mitchell J., 2002. Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol. 31(1–3):79–85. 10.1016/S0141-8130(02)00067-3

Shevkani K., Singh N., Bajaj R., and Kaur A., 2017. Wheat starch production, structure, functionality and applications—a review. Int J Food Sci Technol. 52(1):38–58. 10.1111/ijfs.13266

Shevkani K., Singh N., Singh S., Ahlawat A.K., and Singh A.M., 2011. Relationship between physicochemical and rheological properties of starches from Indian wheat lines. Int J Food Sci Technol. 46(12):2584–2590. 10.1111/j.1365-2621.2011.02787.x

Shewry P.R., Underwood C., Wan Y., Lovegrove A., Bhandari D., Toole G., Mills E.C., Denyer K., and Mitchell R.A., 2009. Storage product synthesis and accumulation in developing grains of wheat. J Cereal Sci. 50(1):106–112. 10.1016/j.jcs.2009.03.009

Singh N., Kaur M., Sandhu K.S., and Guraya H.S., 2004. Physicochemical, thermal, morphological and pasting properties of starches from some Indian black gram (Phaseolus mungo L.) cultivars. Starch-Stärke. 56(11):535–544. 10.1002/star.200400290

Singh J., McCarthy O.J., and Singh H., 2006. Physico-chemical and morphological characteristics of New Zealand Taewa (Maori potato) starches. Carbohydr Polym. 64(4):569–581. 10.1016/j.carbpol.2005.11.013

Singh S., Singh N., Isono N., and Noda T., 2010. Relationship of granule size distribution and amylopectin structure with pasting, thermal, and retrogradation properties in wheat starch. J Agric Food Chem. 58(2):1180–1188. 10.1021/jf902753f

Song Z., Zhong Y., Tian W., Zhang C., Hansen A.R., Blennow A., Liang W., and Guo D., 2020. Structural and functional characterizations of α-amylase-treated porous popcorn starch. Food Hydrocol. 108:105606. 10.1016/j.foodhyd.2019.105606

Staroszczyk H., Fiedorowicz M., Opalińska-Piskorz J., and Tylingo R., 2013. Rheology of potato starch chemically modified with microwave-assisted reactions. Food Sci Technol (LWT). 53(1):249–254. 10.1016/j.lwt.2013.01.009

Takagi H., Suzuki S., Akdogan G., and Kitamura S., 2017. Surface structure and water adsorption behavior of waxy/amylose extender (wx/ae) double-mutant rice starch. Starch-Stärke. 69(11–12):1600374. 10.1002/star.201600374

Tan I., Flanagan B.M., Halley P.J., Whittaker A.K., and Gidley M.J., 2007. A method for estimating the nature and relative proportions of amorphous, single, and double-helical components in starch granules by 13C CP/MAS NMR. Biomacromolecules. 8(3):885–891. 10.1021/bm060988a

Tao H., Wang P., Wu F., Jin Z., and Xu X., 2016. Particle size distribution of wheat starch granules in relation to baking properties of frozen dough. Carbohydr Polym. 137:147–153. 10.1016/j.carbpol.2015.10.063

Tester R.F., and Karkalas J., 2001. The effects of environmental conditions on the structural features and physico-chemical properties of starches. Starch-Stärke. 53(10):513–519. 10.1002/1521-379X(200110)53:10<513::AID-STAR513>3.0.CO;2-5

Wang S., Luo H., Zhang J., Zhang Y., He Z., and Wang S., 2014. Alkali-induced changes in functional properties and in vitro digestibility of wheat starch: the role of surface proteins and lipids. J Agric Food Chem. 62(16):3636–3643. 10.1021/jf500249w

Wang S., Wang J., Zhang W., Li C., Yu J., and Wang S., 2015. Molecular order and functional properties of starches from three waxy wheat varieties grown in China. Food Chem. 181:43–50. 10.1016/j.foodchem.2015.02.065

Wang L., Yu X., Yang Y., Chen X., Wang Q., Zhang X., Ran L., and Xiong F., 2018. Morphology and physicochemical properties of starch in wheat superior and inferior grains. Starch-Stärke. 70(3–4):1700177. 10.1002/star.201700177

Wickramasinghe H.A.M., Miura H., Yamauchi H., and Noda T., 2005. Comparison of the starch properties of Japanese wheat varieties with those of popular commercial wheat classes from the USA, Canada and Australia. Food Chem. 93(1):9–15. 10.1016/j.foodchem.2004.08.049

Wongsagonsup R., Pujchakarn T., Jitrakbumrung S., Chaiwat W., Fuongfuchat A., Varavinit S., Dangtip S., and Suphantharika M., 2014. Effect of cross-linking on physicochemical properties of Tapioca starch and its application in soup product. Carbohydr Polym. 101:656–665. 10.1016/j.carbpol.2013.09.100

Xia H., Li Y., and Gao Q., 2016. Preparation and properties of RS4 citrate sweet potato starch by heat-moisture treatment. Food Hydrocol. 55:172–178. 10.1016/j.foodhyd.2015.11.008

Xie X., Chen J., Cheng L., Zhang B., Zhu H., Xu C., and Liang D., 2024. Physicochemical properties of different size fractions of potato starch cultivated in Highland China. Int J Biol Macromol. 256:128065. 10.1016/j.ijbiomac.2023.128065

Xu C., Li C., Li E., and Gilbert R.G., 2024. Insights into wheat-starch biosynthesis from two-dimensional macromolecular structure. Carbohydr Polym. 337:122190. 10.1016/j.carbpol.2024.122190

Yoo S.H., and Jane J.l., 2002. Structural and physical characteristics of waxy and other wheat starches. Carbohydr Polym. 49(3):297–305. 10.1016/S0144-8617(01)00338-1

Zeng F., Gao Q.Y., Han Z., Zeng X.A., and Yu S.J., 2016. Structural properties and digestibility of pulsed electric field treated waxy rice starch. Food Chem. 194:1313–1319. 10.1016/j.foodchem.2015.08.104

Zhang Y., Dai Y., Hou H., Li X., Dong H., Wang W., and Zhang H., 2020. Ultrasound-assisted preparation of octenyl succinic anhydride modified starch and its influence mechanism on the quality. Food Chem X. 5:100077. 10.1016/j.fochx.2020.100077

Zhang Q., Duan H., Zhou Y., Zhou S., Ge X., Shen H., Li W., and Yan W., 2023. Effect of dry heat treatment on multi-structure, physicochemical properties, and in vitro digestibility of potato starch with controlled surface-removed levels. Food Hydrocol. 134:108062. 10.1016/j.foodhyd.2022.108062

Zhang B., Li X., Liu J., Xie F., and Chen L., 2013a. Supramolecular structure of A-and B-type granules of wheat starch. Food Hydrocol. 31(1):68–73. 10.1016/j.foodhyd.2012.10.006

Zhang Z., Tian X., Wang P., Jiang H., and Li W., 2019. Compositional, morphological, and physicochemical properties of starches from red Adzuki bean, chickpea, Faba bean, and Baiyue bean grown in China. Food Sci Nutr. 7(8):2485–2494. 10.1002/fsn3.865

Zhang H., Zhang W., Xu C., and Zhou X., 2013b. Morphological features and physicochemical properties of waxy wheat starch. Int J Biol Macromol. 62:304–309. 10.1016/j.ijbiomac.2013.09.030

Zhao T., Li X., Zhu R., Ma Z., Liu L., Wang X., and Hu X., 2019. Effect of natural fermentation on the structure and physicochemical properties of wheat starch. Carbohydr Polym. 218:163–169. 10.1016/j.carbpol.2019.04.061

Zhou Y., Zhao D., Winkworth-Smith C.G., Foster T.J., Nirasawa S., Tatsumi E., and Cheng Y., 2015. Effect of a small amount of sodium carbonate on Konjac glucomannan-induced changes in wheat starch gel. Carbohydr Polym. 116:182–188. 10.1016/j.carbpol.2014.02.087