Effect of microencapsulation by spray drying on the protein content of Spirulina (Arthrospira platensis)
Main Article Content
Keywords
Amino acids, factorial design, maltodextrin, optimization, Spirulina, spray drying
Abstract
Nowadays, there is a great demand for sustainable and nutritious foods, and fresh spirulina is a highly valuable source of protein. However, its use is limited because of its sensitivity to environmental stress conditions and distinctive flavor. Nevertheless, microencapsulation offers an effective solution to enhance stability and mask undesirable sensory properties. This study optimized Spirulina microencapsulation via spray drying, employing maltodextrin (MD) as the coating agent. By factorial design, inlet temperature (160–180°C) and Spirulina:MD ratios (1:2–1:4) were evaluated, identifying optimal conditions (174.7°C, 1:4 ratio) that achieved 46% yield and 31.65% protein content while preserving its native amino acid profile.
References
Al-Dhabi N.A. 2013. Heavy metal analysis in commercial spirulina products for human consumption. Saudi. J. Biol. Sci. 20(4): 383–388. https://doi.org/10.1016/J.SJBS.2013.04.006
Alfadhly N.K.Z., Alhelfi N., Altemimi A.B., Verma D.K., Cacciola F., Narayanankutty A., et al. 2022. Trends and technological advancements in the possible food applications of spirulina and their health benefits: A review. Molecules. 27(17): 5584. https://doi.org/10.3390/MOLECULES27175584
Allen B. and Saunders J. 2023. Malnutrition and undernutrition: Causes, consequences, assessment and management. Medicine. 51(7): 461–468. https://doi.org/10.1016/J.MPMED.2023.04.004
Almeida L.M.R., Cruz L.F. da S., Machado B.A.S., Nunes I.L., Costa J.A.V., Ferreira E. de S., et al. 2021. Effect of the addition of Spirulina sp. biomass on the development and characterization of functional food. Algal Research. 58: 102387. https://doi.org/10.1016/J.ALGAL.2021.102387
Amaya-Farfan J. 2020. Denaturation of proteins, generation of bioactive peptides, and alterations of amino acids. In Chemical Changes During Processing and Storage of Foods: Implications for Food Quality and Human Health (pp. 21–84). Elsevier. https://doi.org/10.1016/B978-0-12-817380-0.00002-6
Arahou F., Hassikou R., Arahou M., Rhazi, L., Wahby, I. 2021. Influence of culture conditions on Arthrospira platensis growth and valorization of biomass as input for sustainable agriculture. Aquaculture International. 29(5): 2009–2020. https://doi.org/10.1007/S10499-021-00730-5/METRICS
Barbosa-Cánovas G.V, Fontana A.J., Schmidt S.J., Labuza T.P. 2020. “Water Activity in Foods: Fundamentals and Applications” (Ed.). 2020. John Wiley & Sons.
Batista de Oliveira T.T., Miranda dos Reis I., Bastos de Souza M., da Silva Bispo E., Fonseca Maciel L., Druzian J.I., et al. 2021. Microencapsulation of Spirulina sp. LEB-18 and its incorporation in chocolate milk: Properties and functional potential. LWT. 148: 111674. https://doi.org/10.1016/J.LWT.2021.111674
Blanco A. and Blanco G. 2022. Proteins. Medical Biochemistry, pp. 21–75. https://doi.org/10.1016/B978-0-323-91599-1.00004-3
Bleakley S. and Hayes M. 2021. Functional and bioactive properties of protein extracts generated from Spirulina platensis and Isochrysis galbana T-Iso. Applied Sciences. 11(9): 3964. https://doi.org/10.3390/APP11093964
Buhani S., Aditiya I., Al Kausar R., Sumadi R. 2019. Production of a Spirulina sp. algae hybrid with a silica matrix as an effective adsorbent to absorb crystal violet and methylene blue in a solution. Sustain. Environ. Res. 1(1): 1–11. https://doi.org/10.1186/s42834-019-0027-2
Butreddy A., Janga K.Y., Ajjarapu S., Sarabu S., Dudhipala, N. 2021. Instability of therapeutic proteins—An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins. Int. J. Biol. Macromol. 167: 309–325. https://doi.org/10.1016/J.IJBIOMAC.2020.11.188
Chaudhary M.N., Li X., Yang S., Wang D., Luo L., Zeng L., et al. 2024. Microencapsulation efficiency of carboxymethylcellulose, gelatin, maltodextrin, and acacia for aroma preservation in jasmine instant tea. Gels. 10(10): 670. https://doi.org/10.3390/GELS10100670/S1
Chen Y., Mutukuri T.T., Wilson N.E., Zhou Q. (Tony). 2021. Pharmaceutical protein solids: Drying technology, solid-state characterization and stability. Adv. Drug Deliv. Rev. 172: 211–233. https://doi.org/10.1016/J.ADDR.2021.02.016
Corrêa-Filho L.C., Moldão-Martins M., Alves V.D. 2019. Advances in the application of microcapsules as carriers of functional compounds for food products. Appl. Sci. 9(3): 571. https://doi.org/10.3390/APP9030571
Costa M.M., Spínola M.P., Prates, J.A.M. 2024. Microalgae as an alternative mineral source in poultry nutrition. Vet. Sci. 11(1): 44. https://doi.org/10.3390/VETSCI11010044
da Silva S.C., Fernandes I.P., Barros L., Fernandes Â., José Alves M., Calhelha R.C., et al. 2019. Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. J. Funct. Foods. 60: 103427. https://doi.org/10.1016/j.jff.2019.103427
Das S., Thiagarajan V., Chandrasekaran N., Ravindran B., Mukherjee A. 2022. Nanoplastics enhance the toxic effects of titanium dioxide nanoparticle in freshwater algae Scenedesmus obliquus. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 256: 109305. https://doi.org/10.1016/J.CBPC.2022.109305
de Morais E.G., Nunes I.L., Druzian J.I., de Morais M.G., da Rosa A.P.C., Costa J.A.V. 2022. Increase in biomass productivity and protein content of Spirulina sp. LEB 18 (Arthrospira) cultivated with crude glycerol. Biomass Convers. Biorefin. 12(3): 597–605. https://doi.org/10.1007/s13399-020-00934-4
Decker B.L.A., Miguel E. de C., Fonteles T.V., Fernandes F.A.N., Rodrigues S. 2024. Impact of spray drying on the properties of grape pomace extract powder. Processes. 12(7): 1390. https://doi.org/10.3390/PR12071390
Demarco M., Moraes J.O. de, Ferrari M.C., Neves F. de F., Laurindo J.B., Tribuzi, G. 2022. Production of Spirulina (Arthrospira platensis) powder by innovative and traditional drying techniques. J. Food Process. Eng. 45(1): e13919. https://doi.org/10.1111/JFPE.13919
Dolganyuk V., Sukhikh S., Kalashnikova O., Ivanova S., Kashirskikh E., Prosekov A., et al. 2023. Food proteins: Potential resources. Sustainability. 15(7): 5863. https://doi.org/10.3390/SU15075863
Duran Barón R., Valle-Vargas M.F., Quintero-Gamero G., Quintanilla-Carvajal M.X., Alean J. 2021. Encapsulation of citrulline extract from watermelon (Citrullus lanatus) by-product using spray drying. Powder Technol. 385: 455–465. https://doi.org/10.1016/J.POWTEC.2021.03.014
Ersado T.L. 2022. Causes of malnutrition. Combating Malnutrition through Sustainable Approaches. https://doi.org/10.5772/INTECHOPEN.104458
Faieta M., Corradini M.G., Di Michele A., D. Ludescher R., Pittia P. 2020. Effect of encapsulation process on technological functionality and stability of Spirulina platensis extract. Food Biophys. 15(1): 50–63. https://doi.org/10.1007/s11483-019-09602-1
Francioso A., Fanelli S., Vigli D., Ricceri L., Cavallaro R.A., Conrado A.B., et al. 2017. HPLC determination of bioactive sulfur compounds, amino acids and biogenic amines in biological specimens. Adv. Exp. Med. Biol. 975: 535–549. https://doi.org/10.1007/978-94-024-1079-2_42
Galván-Colorado C., Chamorro-Cevallos G.A., Chanona-Pérez J J., Zepeda-Vallejo L.G., Arredondo-Tamayo B., González-Ussery S.A., et al. 2024. Phycobiliprotein from arthrospira maxima: Conversion to nanoparticles by high-energy ball milling, structural characterization, and evaluation of their anti-inflammatory effect. Int. J. Biol. Macromol. 275: 133679. https://doi.org/10.1016/J.IJBIOMAC.2024.133679
García A.B., Longo E., Bermejo R. 2021. The application of a phycocyanin extract obtained from Arthrospira platensis as a blue natural colorant in beverages. J. Appl. Phycol. 33(5): 3059–3070. https://doi.org/10.1007/S10811-021-02522-Z/TABLES/4
Garcia S.N., Osburn B.I., Jay-Russell M.T. 2020. One health for food safety, food security, and sustainable food production. Front. Sustain. Food Syst. 4: 481782. https://doi.org/10.3389/FSUFS.2020.00001/BIBTEX
Gentscheva G., Nikolova K., Panayotova V., Peycheva K., Makedonski L., Slavov P., et al. 2023. Application of Arthrospira platensis for medicinal purposes and the food industry: A review of the literature. Life. 13(3): 845. https://doi.org/10.3390/LIFE13030845
Ghani A.A., Adachi S., Shiga H., Neoh T.L., Adachi S., Yoshii H. 2017. Effect of different dextrose equivalents of maltodextrin on oxidation stability in encapsulated fish oil by spray drying. BBB. 81(4): 705–711. https://doi.org/10.1080/09168451.2017.1281721
Golmakani M.T., Hajjari M.M., Kiani F., Sharif N., Hosseini S.M.H. 2024. Application of electrospinning to fabricate phycocyanin- and Spirulina extract-loaded gliadin fibers for active food packaging. Food Chem. X: 22. https://doi.org/10.1016/j.fochx.2024.101275
Guarienti C., Bender L.E., Frota E.G., Bertolin T.E., Costa J.A.V., Richards N.S.P. dos S. 2021. Effects of microencapsulation on the preservation of thermal stability and antioxidant properties of Spirulina. J. Food Meas. Charact. 15(6): 5657–5668. https://doi.org/10.1007/S11694-021-01140-0/METRICS
Guidi F., Gojkovic Z., Venuleo M., Assunçao P.A.C.J., Portillo E. 2021. Long-term cultivation of a native arthrospira platensis (Spirulina) strain in pozo izquierdo (Gran Canaria, Spain): Technical evidence for a viable production of food-grade biomass. Processes. 9(8): 1333. https://doi.org/10.3390/PR9081333/S1
Haque A., Sheikh B., Rahman M. 2018. Drying and Denaturation of Proteins in Spray Drying Process. https://www.researchgate.net/publication/275100415
Janda-Milczarek K., Szymczykowska K., Jakubczyk K., Kupnicka P., Skonieczna-Żydecka K., Pilarczyk B., et al. 2023. Spirulina supplements as a source of mineral nutrients in the daily diet. Appl. Sci (Switzerland), 13(2): 1011. https://doi.org/10.3390/APP13021011/S1
Jia X., Cui H., Qin S., Ren J., Zhang Z., An Q., et al. 2024. Characterizing and decoding the key odor compounds of Spirulina platensis at different processing stages by sensomics. Food Chem. 461: 140944. https://doi.org/10.1016/J.FOODCHEM.2024.140944
Jiménez-González O. and Guerrero-Beltrán J.Á. 2021. Extraction, microencapsulation, color properties, and experimental design of natural pigments obtained by spray drying. Food Eng. Rev. 13(4): 769–811. https://doi.org/10.1007/S12393-021-09288-7
Jung F., Braune S., Jung C.H.G., Krüger-Genge A., Waldeck P., Petrick I., et al. 2022. Lipophilic and hydrophilic compounds from Arthrospira platensis and its effects on tissue and blood cells—An overview. Life. 12(10): 1497. https://doi.org/10.3390/LIFE12101497
Kamble S., Agrawal S., Cherumukkil S., Sharma V., Jasra R.V., Munshi P. 2022. Revisiting zeta potential, the key feature of interfacial phenomena, with applications and recent advancements. ChemistrySelect. 7(1). https://doi.org/10.1002/SLCT.202103084
Koli D.K., Rudra S.G., Bhowmik A., Pabbi S. 2022. Nutritional, functional, textural and sensory evaluation of Spirulina enriched green pasta: A potential dietary and health supplement. Foods. 11(7): 979. https://doi.org/10.3390/FOODS11070979
Konar N., Durmaz Y., Genc Polat D., Mert, B. 2022. Optimization of spray drying for Chlorella vulgaris by using RSM methodology and maltodextrin. J. Food Process. Preserv. 46(5): e16594. https://doi.org/10.1111/JFPP.16594
Kosasih E.A., Dzaky M.I., Zikri A., Rachmanudiputra A., Abizar F., Fauzi M., et al. 2023. Microencapsulation of maltodextrin and gelatin using spray drying with double-condenser compression refrigeration systems. Case Stud. Therm. Eng. 45: 102931. https://doi.org/10.1016/J.CSITE.2023.102931
Kumar R., Hegde A.S., Sharma K., Parmar P., Srivatsan V. 2022. Microalgae as a sustainable source of edible proteins and bioactive peptides – Current trends and future prospects. Food Res. Int. 157: 111338. https://doi.org/10.1016/J.FOODRES.2022.111338
Lee H.W., Lu Y., Zhang Y., Fu C., Huang D. 2021. Physicochemical and functional properties of red lentil protein isolates from three origins at different pH. Food Chem. 358: 129749. https://doi.org/10.1016/J.FOODCHEM.2021.129749
Lu W., Yang X., Shen J., Li Z., Tan S., Liu W., Cheng Z. 2021. Choosing the appropriate wall materials for spray-drying microencapsulation of natural bioactive ingredients: Taking phenolic compounds as examples. Powder Technol. 394: 562–574. https://doi.org/10.1016/J.POWTEC.2021.08.082
Luo G., Liu H., Yang S., Sun Z., Sun L., Wang L. 2024. Manufacturing processes, additional nutritional value and versatile food applications of fresh microalgae Spirulina. Front. Nutr. 11: 1455553. https://doi.org/10.3389/FNUT.2024.1455553
Maag P., Dirr S., Karslioglu Ö.Ö. 2022. Investigation of bioavailability and food-processing properties of Arthrospira platensis by enzymatic treatment and micro-encapsulation by Spray Drying. Foods. 11(13): 1922. https://doi.org/10.3390/FOODS11131922
Markou G., Kougia E., Arapoglou D., Chentir I., Andreou V., Tzovenis I. 2023. Production of Arthrospira platensis: Effects on growth and biochemical composition of long-term acclimatization at different salinities. Bioengineering. 10(2): 233. https://doi.org/10.3390/BIOENGINEERING10020233
Mohammadi M., Mahdavi-Yekta M., Reihani S.F.S., Khorshidian N., Habibi M., Mousavi Khaneghah A. 2024. Assessment of physicochemical properties of orange juice concentrate formulated with pectin, xanthan, and CMC hydrocolloids. Int. J. Food Sci. 2024(1): 7013553. https://doi.org/10.1155/2024/7013553
Norkaew O., Thitisut P., Mahatheeranont S., Pawin B., Sookwong P., Yodpitak S., Lungkaphin A. 2019. Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chem. 294: 493–502. https://doi.org/10.1016/J.FOODCHEM.2019.05.086
Nunes E., Odenthal K., Nunes N., Fernandes T., Fernandes I.A., Pinheiro de Carvalho M.A.A. 2024. Protein extracts from microalgae and cyanobacteria biomass. Techno-functional properties and bioactivity: A review. Algal Res. 82: 103638. https://doi.org/10.1016/J.ALGAL.2024.103638
Olson B., Marks D.L., Grossberg A.J. 2020. Diverging metabolic programmes and behaviours during states of starvation, protein malnutrition, and cachexia. J. Cachexia Sarcopenia Muscle. 11(6): 1429–1446. https://doi.org/10.1002/JCSM.12630
Ozdemir N., Bayrak A., Tat T., Altay F., Kiralan M., Kurt, A. 2021. Microencapsulation of basil essential oil: Utilization of gum Arabic/whey protein isolate/maltodextrin combinations for encapsulation efficiency and in vitro release. J. Food Meas. Charact. 15(2): 1865–1876. https://doi.org/10.1007/S11694-020-00771-Z/METRICS
Özyurt G., Uslu L., Durmuş M., Sakarya Y., Uzlaşir T., Küley E. 2023. Chemical and physical characterization of microencapsulated Spirulina fermented with Lactobacillus plantarum. Algal Res. 73: 103149. https://doi.org/10.1016/J.ALGAL.2023.103149
Padhani Z.A., Das J.K., Akhtar S., Ismail T., Bhutta Z.A. 2022. Tackling protein-calorie malnutrition during world crises. Ann. Nutr. Metab. 78(Suppl. 1): 27–38. https://doi.org/10.1159/000522242
Pais M., George S.D., Rao P. 2021. Interfacial adsorption of nanoparticles of maltodextrin for enhanced protection of metal surface. Surf. Interfaces. 26: 101418. https://doi.org/10.1016/j.surfin.2021.101418
Papalia T., Sidari R., Panuccio M.R. 2019. Impact of different storage methods on bioactive compounds in Arthrospira platensis biomass. Molecules. 24(15): 2810. https://doi.org/10.3390/MOLECULES24152810
Piñón-Balderrama C.I., Leyva-Porras C., Terán-Figueroa Y., Espinosa-Solís V., Álvarez-Salas C., Saavedra-Leos M.Z. 2020. Encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. Processes. 8(8): 889. https://doi.org/10.3390/PR8080889
Pintado T. and Delgado-Pando G. 2020. Towards more sustainable meat products: Extenders as a way of reducing meat content. Foods. 9(8): 1044. https://doi.org/10.3390/FOODS9081044
Pootthachaya P., Puangsap W., Bunchalee P., Plangklang P., Reungsang A., Yuangsoi B., Cherdthong A., et al. 2023. Investigation of nutritional profile, protein solubility and in vitro digestibility of various algae species as an alternative protein source for poultry feed. Algal Res. 72: 103147. https://doi.org/10.1016/J.ALGAL.2023.103147
Pratama A.I., Lioe H.N., Yuliana N.D., Ogawa M. 2022. Umami compounds present in umami fraction of acid-hydrolyzed Spirulina (Spirulina platensis). Algal Res. 66: 102764. https://doi.org/10.1016/J.ALGAL.2022.102764
Priyanka S., Varsha R., Verma R., Babu A.S. 2023. Spirulina: A spotlight on its nutraceutical properties and food processing applications. JMBFS. 12(6): e4785-e4785. https://doi.org/10.55251/jmbfs.4785
Proch J. and Niedzielski P. 2021. Iron species determination by high performance liquid chromatography with plasma based optical emission detectors: HPLC–MIP OES and HPLC–ICP OES. Talanta. 231: 122403. https://doi.org/10.1016/J.TALANTA.2021.122403
Raczyk M., Polanowska K., Kruszewski B., Grygier A., Michałowska D. 2022. Effect of Spirulina (Arthrospira platensis) supplementation on physical and chemical properties of semolina (Triticum durum) based fresh pasta. Molecules. 27(2): 55. https://doi.org/10.3390/MOLECULES27020355
Ragaza J.A., Hossain M.S., Meiler K.A., Velasquez S.F., Kumar V. 2020. A review on Spirulina: Alternative media for cultivation and nutritive value as an aquafeed. Rev. Aquac. 12(4): 2371–2395. https://doi.org/10.1111/RAQ.12439
Raja K., Kadirvel V., Subramaniyan T. 2022. Seaweeds, an aquatic plant-based protein for sustainable nutrition – A review. Future Foods. 5:100142. https://doi.org/10.1016/J.FUFO.2022.100142
Ramírez-Rodrigues M.M., Estrada-Beristain C., Metri-Ojeda J., Pérez-Alva A., Baigts-Allende D.K. 2021. Spirulina platensis protein as sustainable ingredient for nutritional food products development. Sustainability. 13(12): 6849. https://doi.org/10.3390/SU13126849
Rong A., Hansopaheluwakan-Edward N., Li D. 2024. Analyzing the color availability of AI-generated posters based on K-means clustering: 74% orange, 38% cyan, 32% yellow, and 28% blue-cyan. Color Res. Appl. 49(2): 234–257. https://doi.org/10.1002/col.22912
Rosero-Chasoy G., Rodríguez-Jasso R.M., Aguilar C.N., Buitrón G., Chairez I., Ruiz H.A. 2022. Growth kinetics and quantification of carbohydrate, protein, lipids, and chlorophyll of Spirulina platensis under aqueous conditions using different carbon and nitrogen sources. Bioresour. Technol. 346: 126456. https://doi.org/10.1016/J.BIORTECH.2021.126456
Rubio C., Dominik-Jakubiec M., Paz S., Gutiérrez Á.J., González-Weller D., Hardisson, A. 2021. Dietary exposure to trace elements (B, Ba, Li, Ni, Sr, and V) and toxic metals (Al, Cd, and Pb) from the consumption of commercial preparations of Spirulina platensis. Environ. Sci. Pollut. Res. Int. 28(17): 22146–22155. https://doi.org/10.1007/S11356-020-12260-3/METRICS
Rzymski P., Budzulak J., Niedzielski P., Klimaszyk P., Proch J., Kozak L., et al. 2019. Essential and toxic elements in commercial microalgal food supplements. J. Appl. Phycol. 31(6): 3567–3579. https://doi.org/10.1007/S10811-018-1681-1/FIGURES/3
Sadigov R. 2022. Rapid growth of the world population and its socioeconomic results. Sci. World J. 2022(1): 8110229. https://doi.org/10.1155/2022/8110229
Samborska K., Poozesh S., Barańska A., Sobulska M., Jedlińska A., Arpagaus C., et al. 2022. Innovations in spray drying process for food and pharma industries. J. Food Eng. 321:110960. https://doi.org/10.1016/J.JFOODENG.2022.110960
Saxena R., Rodríguez-Jasso R.M., Chávez-Gonzalez M.L., Aguilar C.N., Quijano G., Ruiz H.A. 2022. Strategy development for microalgae Spirulina platensis biomass cultivation in a bubble photobioreactor to promote high carbohydrate content. Fermentation. 8(8):374. https://doi.org/10.3390/FERMENTATION8080374
Scholes G. 2022. Protein-energy malnutrition in older Australians: A narrative review of the prevalence, causes and consequences of malnutrition, and strategies for prevention. HPJA. 33(1): 187–193. https://doi.org/10.1002/HPJA.489
Semba R.D., Ramsing R., Rahman N., Kraemer K., Bloem M.W. 2021. Legumes as a sustainable source of protein in human diets. GFSI. 28: 100520. https://doi.org/10.1016/J.GFS.2021.100520
Shaghaghian S., McClements D.J., Khalesi M., Garcia-Vaquero M., Mirzapour-Kouhdasht A. 2022. Digestibility and bioavailability of plant-based proteins intended for use in meat analogues: A review. Trends Food Sci. Technol. 129: 646–656. https://doi.org/10.1016/J.TIFS.2022.11.016
Silva N.C., Freitas L.V.D., Silva T.C., Duarte C.R., Barrozo M.A.S. 2023. Use of refractance window drying as an alternative method for processing the microalga Spirulina platensis. Molecules. 28(2): 720. https://doi.org/10.3390/MOLECULES28020720
Stramarkou M., Papadaki S., Kyriakopoulou K., Tzovenis I., Chronis M., Krokida M. 2021. Comparative analysis of different drying techniques based on the qualitative characteristics of Spirulina platensis biomass. J. Aquat. Food Prod. Technol. 30(5): 498–516. https://doi.org/10.1080/10498850.2021.1900969
Taiti C., Di Vito M., Di Mercurio M., Costantini L., Merendino N., Sanguinetti M., Bugli F., Garzoli S. 2023. Detection of secondary metabolites, proximate composition and bioactivity of organic dried Spirulina (Arthrospira platensis). Appl. Sci. 14(1): 67. https://doi.org/10.3390/APP14010067
Tay J.B.J., Chua X., Ang C., Subramanian G.S., Tan S.Y., Lin E.M.J., et al. 2021. Effects of spray-drying inlet temperature on the production of high-quality native rice starch. Processes. 9(9): 1557. https://doi.org/10.3390/PR9091557/S1
Tessier R., Calvez J., Khodorova N., Gaudichon C. 2021. Protein and amino acid digestibility of 15N Spirulina in rats. Eur. J. Nutr. 60(4): 2263–2269. https://doi.org/10.1007/S00394-020-02368-0/METRICS
Tuesta-Chavez T., Monteza J., Silva Jaimes M.I., Ruiz-Pacco G.A., Changanaqui K., Espinoza – Suarez J.B., et al. 2022. Characterization and evaluation of antioxidant and antimicrobial capacity of prepared liquid smoke-loaded chitosan nanoparticles. J. Food Eng. 319: 110912. https://doi.org/10.1016/J.JFOODENG.2021.110912
United Nations. 2017. World Population Prospects: The 2017 Revision. Department of Economic and Social Affairs, Population Division, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248.
USDA Foreign Agricultural Service. 2018. Maximum Levels of Contaminants in Foods. China Releases the Standard for Maximum Levels of Contaminants in Foods. Global Agricultural Information Network. GAIN Report Number: CH18025
Valková V., Ďúranová H., Falcimaigne-Cordin A., Rossi C., Nadaud F., Nesterenko A., et al. 2022. Impact of freeze- and spray-drying microencapsulation techniques on β-Glucan powder biological activity: A comparative study. Foods. 11(15): 2267. https://doi.org/10.3390/FOODS11152267
Van C.K., Nguyen P.T.N., Nguyen T.T.T., Bach L.G. 2024. Microencapsulation of Citrus latifolia peel essential oil by spray-drying using maltodextrin: Characterization, antimicrobial activities, and release profile. LWT. 197: 115825. https://doi.org/10.1016/J.LWT.2024.115825
Wang X., Li Y., Zhang X., Chen X., Wang X., Yu D., et al. 2024. The extracellular polymeric substances (EPS) accumulation of Spirulina platensis responding to Cadmium (Cd2+) exposure. J. Hazard. Mater. 470: 134244. https://doi.org/10.1016/J.JHAZMAT.2024.134244
Xiao Z., Xia J., Zhao Q., Niu Y., Zhao D. 2022. Maltodextrin as wall material for microcapsules: A review. Carbohydr. Polym. 298: 120113. https://doi.org/10.1016/J.CARBPOL.2022.120113
Yadav M., Kumar V., Jain S., Sandal N., Chauhan M.K. 2022. Assessment of Adsorption and Removal Efficacy of Spirulina Powder for Strontium and Thallium. https://doi.org/10.21203/RS.3.RS-1539864/V1
Yu J.Y., Roh S.H., Park H.J. 2021. Characterization of ferulic acid encapsulation complexes with maltodextrin and hydroxypropyl methylcellulose. Food Hydrocoll. 111: 106390. https://doi.org/10.1016/j.foodhyd.2020.106390
Zhang H., Gong T., Li J., Pan B., Hu Q., Duan M., Zhang, X. 2022. Study on the effect of spray drying process on the quality of microalgal biomass: A comprehensive biocomposition analysis of spray-dried S. acuminatus biomass. Bioenergy Res. 15(1): 320–333. https://doi.org/10.1007/S12155-021-10343-8/METRICS
Zhao M., Cao W., Li L., Ren A., Ang Y., Chen J., et al. 2022. Effects of different proteins and maltodextrin combinations as wall material on the characteristics of Cornus officinalis flavonoids microcapsules. Front. Nutr. 9: 1007863. https://doi.org/10.3389/FNUT.2022.1007863/BIBTEX