Application of antagonistic antibacterial activity cling film in extending the shelf life of perishable agricultural products

Main Article Content

Ying He
Tian Qiu
Bangdi Liu
Lihua Wang
Panpan Chu
Farwa Jabbir
Tariq Aziz
Ashwag Shami
Fahad Al-Asmari
Fakhria A. Al-Joufi
Jing Sun
Min Zhang

Keywords

antagonistic bacteria, mechanism, preservative film, preservation of agricultural products, spoilage bacteria

Abstract

Spoilage of perishable agricultural products during storage and transport leads to significant economic losses. Antimicrobial active preservative film is an emerging technology for preserving these products. This paper reviews the advantages and disadvantages of using antagonistic bacteria in agricultural product preservation, the synergy between antagonistic bacteria and preservative films, the combination of antimicrobial active films with other preservation methods, and their application in fruits, vegetables, chilled meat, aquatic products, and raw milk. The study concludes that while antagonistic and antimicrobial active films offer marked advantages in preserving agricultural products, challenges remain, such as degradation in mechanical properties and reduced stability after incorporating antagonistic bacteria, as well as the limited effectiveness of single-use applications. A recommended approach is to combine antimicrobial active films with other preservation techniques to enhance overall effectiveness. Currently, many antimicrobial active preservative films have demonstrated significant potential in preserving perishable agricultural products in the field of agricultural preservation.

Abstract 81 | PDF Downloads 47 HTML Downloads 0 XML Downloads 4

References

Adame MY, Shi C, Li C, Aziz T, Alharbi M, Cui H, Lin L. (2024). Fabrication and characterization of pullulan/tapioca starch-based antibacterial films incorporated with Litsea cubeba essential oil for meat preservation. Int J Biol Macromol. 296:139799. 10.1016/j.ijbiomac.2025.139799.

Adame MY, Wang Y, Shi C, Aziz T, Al-Asmari F, Sameeh MY, Cui H, Lin L. (2024). Fortification of pullulan/cassava starch-based edible films incorporated with LC-EO nanoparticles and the application for beef meat preservation. Int J Biol Macromol. 279(Pt 4):135629.

Ahmad, R.M., Deog-Hwan, O. (2015). Combined effects of thermosonication and slightly acidic electrolyzed water on the microbial quality and shelf life extension of fresh-cut kale during refrigeration storage. Food Micro. 51(2015): 154–162. 10.1016/j.fm.2015.05.008.

Ahmed, E.G., Joseph, L.S., Charles, L.W. (2000). Enhancement of the performance of Candida saitoana by the addition of glycolchitosan for the control of postharvest decay of apple and citrus fruit. Postharvest Bio and Tech. 19(1): 103–110. 10.1016/j.biocontrol.2010.05.003.

Alberto, B., Francesco, B., Giorgio, C., Stefania, I., Matilde, M., Luciano, P., & Manuela, R. (2012). Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Cont. 26(2): 387–392. 10.1016/j.foodcont.2012.01.046

Ana, G., Luís, A., Lorenzo, M. P., & Miguel, A. C. (2018). Edible films and coatings as carriers of living microorganisms: A new strategy towards biopreservation and healthier foods. Comp. Rev. Food Sci., and Food Saf. 17: 594–614. 10.1111/1541-4337.12345

Anumudu, C., Hart, A., Miri, T., & Onyeaka, H. (2021). Recent advances in the application of the antimicrobial peptide nisin in the inactivation of spore-forming bacteria in foods. Molecules. 26(18): 5552. 10.3390/molecules26185552

Ayhan, D., & Halil, I. K. (2019). The effect of chitosan coating and vacuum packaging on the microbiological and chemical properties of beef. Meat Sci. 162: 107961. 10.1016/j.meatsci.2019.107961

Aziz, T., Li, Z., Naseeb, J., Sarwar, A., Zhao, L., Lin, L., & Al Asmari, F. (2024). Role of bacterial exopolysaccharides in edible films for food safety and sustainability. Current trends and future perspectives. Italian J Food Sci. 36(4): 169–179. 10.15586/ijfs.v36i4.2690

Aziz, T., Shah, Z., Sarwar, A. Ullah N, Khan AA, Sameeh MY, Cui H, Lin L. (2023). Production of bioethanol from pretreated rice straw, an integrated and mediated upstream fermentation process. Biomass Conv. Bioref. 2023:1–12.

Bae, S. K., Kim, S., & Shin, K. B. (2018). Characterization of Ecklonia cava alginate films containing cinnamon essential oils. Inter. J Molecular Sci. 19(11): 3545. 10.3390/ijms19113545.

Barbiroli, A., Musatti, A., Capretti, G., Iametti, S., & Rollini, M. (2017). Sakacin-A antimicrobial packaging for decreasing Listeria contamination in thin-cut meat: Preliminary assessment. J Sci. Food and Agri. 97(3): 1042–1047. 10.1002/jsfa.8120

Benjamín, R. H., & Antje, L. (2024). Flexible PLA copolymers with low melt flow index for blown film applications. Chemie Ingenieur Technik. 96(5): 586–597. 10.1002/CITE.202300150

Bhaskaran, R., Ramachandra, K. S. S., Peter, R., Gopakumar, S. T., Gopalan, M. K., & Mozhikulangara, R. R. (2023). Antimicrobial resistance and antagonistic features of bivalve-associated Vibrio parahaemolyticus from the south-west coast of India. Enviro. Sci. Pollu. Res. Inter. 30(49): 107681–107692. 10.1007/s11356-023-29924-5

Buzby, J.C., Farah-Wells, H., Hyman, J. (2014). The estimated amount, value, and calories of postharvest food losses at the retail and consumer levels in the United States. USDA-ERS Economic Information Bulletin.

Calderón, C. E., Rotem, N., Raviv, H., David, V. C., & Maggie, L. (2019). Pseudozyma aphidis activates reactive oxygen species production, programmed cell death and morphological alterations in the necrotrophic fungus. Botrytis cinerea. Molecular Plant Patho. 20(4): 562–574. 10.1111/mpp.12775

ChanHo, L., DuckSoon, A., HyunJin, P., & DongSun, L. (2003). Wide spectrum antimicrobial packaging materials incorporating nisin and chitosan in the coating. Pack. Techno. Sci. 16(3): 99–106. 10.1002/pts.617

Chao, G., Xueying, L., Jinlian, M., Haina, B., Hedong, B., Guohuan, H. (2023). High strength, controlled release of curcumin-loaded ZIF-8/chitosan/zein film with excellence gas barrier and antibacterial activity for litchi preservation. Carbo. Poly. 306(2023): 120612–120612. 10.1016/J.CARBPOL.2023.120612

Charles, L.W., Michael, E.W., Charles, L.B., Randy, M., Edo, C., Samir, D. (1992). Wisniewski Biological Control of Postharvest Diseases of Fruits and Vegetables: Recent Advances. HortSci. 27(2): 94–98. 10.1016/0261-2194(91)90039-T

Cheng, S.-H., Chen, Y.-J., Tsai, H.-J., Hsu, H.-I., Chen, H.-J., Su, K.-C., Peng, C.-L., & Tsai, G.-J. (2021). Applications of nisin and EDTA in food packaging for improving fabricated chitosan-polylactate plastic film performance and fish fillet preservation. Membranes. 11(11): 852. 10.3390/membranes11110852

Christos, S., Poonam, S., William, M., Christopher, P., Ian, D.F. (2016). Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films. Food Hydrocolloids. 52: 876–887. 10.1016/j.foodhyd.2015.08.025

Çiçek, S., Özoğul, F. (2023). Nanotechnology-based preservation approaches for aquatic food products: A review with the current knowledge. Crit. Rev. Food Sci and Nutr. 63(19): 3255–3278. 10.1080/10408398.2022.2096563

Cui H, Chen Y, Aziz T, Al-Asmari F, Alwethayanu MS, Shi C, Lin L. (2024b). Antibacterial mechanisms of diacetyl on Listeria monocytogenes and its application in Inner Mongolian cheese preservation via gelatin-based edible films. Food Cont. 168: 110920, 10.1016/j.foodcont.2024.110920

Cui H, Gao J, Khin MN, Aziz T, Al-Asmari F, Alamri AS, Alhomrani M, Lin L. (2024). Preparation and application of pH-sensitive protein nanofibre membrane loaded with Alizarin and Curcumin for meat preservation. Pack. Tech., and Sci. 2024: 794–807. 10.1002/pts.2823

Dawson, P.L., Carl, G.D., Acton, J.C., Han, I.Y. (2002). Effect of lauric acid and nisin-impregnated soy-based films on the growth of Listeria monocytogenes on turkey bologna. Poultry Sci. 81(5): 721–726. 10.1093/ps/81.5.721

Diana, C. V., Carmen, L. G., Nicholas, D. C., Daniel, G. E., & Eric, S. M. (2017). Emerging biorecognition and transduction schemes for rapid detection of pathogenic bacteria in food. Comp. Rev. Food Sci., and Food Safety. 16(6): 1188–1205. 10.1111/1541-4337.12294

Dianpeng, Z., Davide, S., Angelo, G., & Maria, L. G. (2010). Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Bio. Con. 54(3): 172–180. 10.1016/j.biocontrol.2010.05.003

Dongdong, Y., Xu, H., Guorong, L., Ying, Y., & Jiaojiao, D. (2022). A novel composite edible film fabricated by incorporating W/O/W emulsion into a chitosan film to improve the protection of fresh fish meat. Food Chem. 385: 132647. 10.1016/J.FOODCHEM.2022.132647

Du, Y., Tian, Q., Li, G., Yi, J., Hu, X., Jiang, Y. (2024). Advanced application of slightly acidic electrolyzed water for fresh-cut fruits and vegetables preservation. Food Res. Inter. 195: 114996. 10.1016/j.foodres.2024.114996

Erlantz, L., Elena, F., Franco, D., José, L. V., Luis, M. L., Ilaria, A., Luigi, T., & José, M. K. (2016). PLLA grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydrate Polymers. 142: 105–113. 10.1016/j.carbpol.2016.01.041

Fei, L., Yuting, D., Xingqian, Y., & Donghong, L. (2010). Cinnamon and nisin in alginate–calcium coating maintain quality of fresh northern snakehead fish fillets. LWT-Food Sci., and Tech. 43(9): 1331–1335. 10.1016/j.lwt.2010.05.003

Feng, S., Yanwei, W., Yongfu, L., & Xiaoyuan, W. (2016). Mode of action of leucocin K7 produced by Leuconostoc mesenteroides K7 against Listeria monocytogenes and its potential in milk preservation. Bio. Letters. 38(9): 1551–1557. 10.1007/s10529-016-2127-y

Flavia, V. F., & Matías, A. M. (2021). Trichoderma as biological control agent: scope and prospects to improve efficacy. World J Micro., and Bio. 37(5): 90. 10.1007/s11274-021-03058-7

Gharsallaoui, A., Oulahal, N., Joly, C., & Degraeve, P. (2016). Nisin as a food preservative: Part 1: Physicochemical properties, antimicrobial activity, and main uses. Critical Rev. Food Sci. Nut. 56(8): 1262–1274. 10.1080/10408398.2013.763765

Gianfranco, R., Franco, N., Antonio, I., & Mario, S. (2001). Effect of short hypobaric treatments on postharvest rots of sweet cherries, strawberries and table grapes. Postharvest Bio., and Tech. 22(1): 1–6. 10.1016/S0925-5214(00)00188-5

Giovanni, A. (1996). Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum

González, T. R., Álvarez, B. M., González, A. N., Escalante, G. R., Cordero, R. G., & Hernández, L. G. (2019). Enhanced biocontrol of fruit rot on muskmelon by combination treatment with marine Debaryomyces hansenii and Stenotrophomonas rhizophila and their potential modes of action. Postharvest Bio., and Tech. 61–67. 10.1016/j.postharvbio.2019.01.013

Guo, X., Chen, K., Chen, L., Le, T. N., Zhao, M., Cai, H. (2025). Effects of Cold Post-Fermentation Process on Microbial Diversity and Biogenic Amines in Protease-Assisted Fermented sufu. Foods. 14(5): 735. 10.3390/foods14050735

Hadis, R., Elham, A., Hoda, S. T., Seid, R. F., & Seid, M. J. (2020). Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends in Food Sci., and Tech. 100: 190–209. 10.1016/j.tifs.2020.04.012

Haitam, L., Samir, A., Rachid, L., & Abdessalem, T. (2024). Lactic acid bacteria as an eco-friendly approach in plant production: Current state and prospects. Folia Microbiologica (Praha). 69(3): 465–489. 10.1007/s12223-024-01146-3

Haiyan, W., Sha-lei, Z., Chi To, N., & Cheng, T. C. E. (2019). Coordinating quality, time, and carbon emissions in perishable food production: A new technology integrating GERT and the Bayesian approach. Inter. J Prod. Eco. 225: 107570. 10.1016/j.ijpe.2019.107570

Haiying, C., Juan, W., Changzhu, L., & Lin, L. (2017). Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles. LWT–Food Sci., and Tech. 81: 233–242. 10.1016/j.lwt.2017.04.003

Hajer, A., Fabio, L., Khaoula, K., Moktar, H., & Cristina, R. (2015). Physical properties and antifungal activity of bioactive films containing Wickerhamomyces anomalus killer yeast and their application for preservation of oranges and control of postharvest green mold caused by Penicillium digitatum. Inter. J. Food Micro. 200: 22–30. 10.1016/j.ijfoodmicro.2015.01.015

Haralampos, G., Kyriaki, G. Z., Costas, G. B., & Konstantinos, P. K. (2010). Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling. Listeria monocytogenes in foods. Food Res. Inter. 43(10): 2402–2408. 10.1016/j.foodres.2010.09.020

Hongsu, W., Ling, G., Lu, L., Baoqing, H., & Xiaodi, N. (2021). Composite chitosan films prepared using nisin and Perilla frutescens essential oil and their use to extend strawberry shelf life. Food Biosci. 41: 101037. 10.1016/J.FBIO.2021.101037

Huang, L., Zhang, X., Wu, Y., Liu, S., Shao, C., & Xie, Y. (2019). Inhibition of tomato early blight disease by culture extracts of a Streptomyces puniceus isolate from mangrove soil. Phytopathology. 109(7): 1149–1156. 10.1094/PHYTO-12-18-0444-R

Huijuan, G., Xin, L., Xiatian, C., Deng, H., Chuang, W., Lei, Z., & Peifeng, L. (2022). The functional roles of Lactobacillus acidophilus in different physiological and pathological processes. J Micro., and Biotech. 32(10): 1–8. 10.4014/jmb.2205.05041

HwanHee, Y., YoungWook, C., & HyunDong, P. (2021). Application of natural preservatives for meat and meat products against food-borne pathogens and spoilage bacteria: A review. Foods. 10(10): 2418. 10.3390/foods10102418

Jain, P.K., & Jain, P.C. (2007). Isolation, characterization and antifungal activity of Streptomyces sampsonii GS 1322. Indian J Exp. Bio. 45(2): 203–206.

Javanmardi, F., Rahmani, J., Ghiasi, F., Hashemi, G. H., & Mousavi, K. A. (2019). The association between the preservative agents in foods and the risk of breast cancer. Nutrition and Cancer. 71(8): 1229–1240. 10.1080/01635581.2019.1608266

Jia, D., Li, W., Ma, D., Liu, Y., Yang, H., Li, J., Sun, G., Nithesh, N., Gao, Z., & Wu, F. (2021). Synergistic effect of carboxymethylcellulose and Cryptococcus laurentii on suppressing green mould of postharvest grapefruit and its mechanism. Inter. J Bio. Macromolecules. 181: 253–262. 10.1016/J.IJBIOMAC.2021.03.155

Jijakli, M. H., & Lepoivre, P. (1998). Characterization of an exo-beta-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology. 88(4): 335–343. 10.1094/PHYTO.1998.88.4.335

Jinjin, H., Min, Z., Mujumdar, A. S., & Yamei, M. (2023). Technological innovations enhance postharvest fresh food resilience from a supply chain perspective. Critical Rev. Food Sci., and Nutr. 21–23. 10.1080/10408398.2023.2232464

Khaleque, M. A., Keya, C. A., Hasan, K. N., Hoque, M. M., Inatsu, Y., & Bari, M. L. (2016). Use of cloves and cinnamon essential oil to inactivate Listeria monocytogenes in ground beef at freezing and refrigeration temperatures. LWT-Food Sci., and Tech. 74: 219–223. 10.1016/j.lwt.2016.07.042

Khan, J., Khurshid, S., Sarwar, A., Aziz, T., Naveed, M., Ali, U., Makhdoom, S. I., Nadeem, A. A., Khan, A. A., Sameeh, M. Y., Alharbi, A. A., Filimban, F. Z., Rusu, A. V., Göksen, G., & Trif, M. (2022). Enhancing Bread Quality and Shelf Life via Glucose Oxidase Immobilized on Zinc Oxide Nanoparticles—A Sustainable Approach towards Food Safety. Sustainability. 14(21): 14255. 10.3390/su142114255

King, A., Bethune, L., & Phillips, I. (1993). In vitro activity of MDL 62,879 (GE2270 A) against aerobic gram-positive and anaerobic bacteria. Antimicrobial Agents and Chemotherapy. 37(4): 746–749. 10.1128/AAC.37.4.746

Koutsoumanis, K., Tsaloumi, S., Aspridou, Z., Tassou, C., & Gougouli, M. (2021). Application of quantitative microbiological risk assessment (QMRA) to food spoilage: Principles and methodology. Trends in Food Sci. & Tech. 114: 2. 10.1016/j.tifs.2021.05.011

Lee, N.-K., Bae, S. J., Do, S. N., Yu, H. H., Kim, J.-S., & Park, H.-D. (2016). The impact of antimicrobial effect of chestnut inner shell extracts against Campylobacter jejuni in chicken meat. LWT-Food Sci. & Tech. 65: 746–750. 10.1016/j.lwt.2015.09.004S

Li, H., Zou, L., Yuan, Q., Xiao, J., Kang, Z., Zhang, Y., Hu, X., Peng, B., He, B., Dai, W., & Liu, S. (2016). Antimicrobial activities of nisin, tea polyphenols, and chitosan and their combinations in chilled mutton. J of Food Sci. 81(6): M1466–M1471. 10.1111/1750-3841.13312

Li, Q., Lan, C., Li, P., Zhang, H., Zhang, X., Zhang, X., Yan, Q., Alexander, M. T., & Sun, Y. (2017). The biocontrol effect of Sporidiobolus pararoseus Y16 against postharvest diseases in table grapes caused by Aspergillus niger and the possible mechanisms involved. Bio. Cont. 113: 18–25. 10.1016/j.biocontrol.2017.06.009

Lin Lin, Xu Liu, Ce Shi, Xiaochen Chen, Tariq Aziz, Fahad Al-Asmari, Amal A. (2024). Mohamed, Haiying Cui. (2024). Preparation and Characterization of Chitosan Polysaccharide Edible Films for Meat Preservation. Pack. Tech., and Sci. 38(3): 211–226. 10.1002/pts.2865

Liu S, Jiang X, Fu F, Aziz T, Li G, Zhao J, Shah S, Xiao G, Gong J, He G. (2023a). Assessing the effect of powder characteristics of infant milk to the compressibility of milk powder compression molding. Food Sci Nutr. 11: 4625–4633. 10.1002/fsn3.3425

Liu S, Lei T, Li G, Liu S, Chu X, Hao D, Xiao G, Khan AA, Haq TU, Sameeh MY, Aziz T, Tashkandi M, He G. (2023b). Rapid detection of micronutrient components in infant formula milk powder using near-infrared spectroscopy. Front Nutr. 10: 1273374. 10.3389/fnut.2023.1273374

López de Lacey, A. M., López-Caballero, M. E., Gómez-Estaca, J., Gómez-Guillén, M. C., & Montero, P. (2012). Functionality of Lactobacillus acidophilus and Bifidobacterium bifidum incorporated into edible coatings and films. Innovative Food Sci. & Emer. Tech. 16: 277–282. 10.1016/j.ifset.2012.07.001

Madhaiyan, M., Poonguzhali, S., Kim, S. W., & Song, T. M. (2010). Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. Inter. J. of Sys., and Evolutionary Microbio. 60(Pt 10): 2490–2495. 10.1099/ijs.0.015487-0

Mannai, S., & Boughalleb, M. N. (2023). Evaluation of Trichoderma harzianum, Bacillus subtilis, and Aspergillus species efficacy in controlling Pythium ultimum associated with apple seedlings decline in nurseries and their growth promotion effect. Egyptian J. of Bio. Pest Cont. 33(1). 10.1186/S41938-023-00705-Z

Mannan, H. A., Mukhtar, H., Murugesan, T., Nasir, R., Mohshim, D. F., & Mushtaq, A. (2013). Recent applications of polymer blends in gas separation membranes. Chemical Engineering & Tech. 36(11): 1838–1846. 10.1002/ceat.201300342

Marín, A., Cháfer, M., Atarés, L., Chiralt, A., Torres, R., Usall, J., & Teixidó, N. (2016). Effect of different coating-forming agents on the efficacy of the biocontrol agent Candida sake CPA-1 for control of Botrytis cinerea on grapes. Biological Cont. 96: 108–119. 10.1016/j.biocontrol.2016.02.012

Min, B. J., Han, I. Y., & Dawson, P. L. (2010). Antimicrobial gelatin films reduce Listeria monocytogenes on turkey bologna. Poultry Sci. 89(6): 1307–1314. 10.3382/ps.2009-00451

Mohamad, A. S., Mahmood, G., Davood, B., & Hasan, S. (2012). Effect of postharvest putrescine application and chitosan coating on maintaining quality of table grape cv. “Shahroudi” during long-term storage. J Food Proc., and Preser. 37(5): 999–1007. 10.1111/j.1745-4549.2012.00735.x

Muhammad, F. R., Ali, S., Choi, J., Hwang, S., Jeong, C., & Bae, K. H. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules. 24(6): 1046. 10.3390/molecules24061046

Na, G., Guilan, Z., Ding, C., Dongkun, W., Fangyan, Z., & Zhilan, Z. (2020). Preparation and characterization of gellan gum-guar gum blend films incorporated with nisin. J Food Sci. 85(6): 1799–1804. 10.1111/1750-3841.15143

Nagasawa, K., Doi, H., Okamoto, M., Sato, T., Takahashi, Y., & Arai, Y. (2017). Antimicrobial activity of ethylene-vinyl acetate containing bioactive filler against oral bacteria. Dental Materials Journal. 36(6): 784–790. 10.4012/dmj.2016-321

Nain, N., Katoch, G. K., Kaur, S., & Rasane, P. (2021). Recent developments in edible coatings for fresh fruits and vegetables. J Hort. Res. 29(2): 127–140. 10.2478/JOHR-2021-0022

Patrícia, M., Daniel, J. D., & Adriano, B. (2010). Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Sci., and Tech. 21(6): 284–292. 10.1016/j.tifs.2010.03.003

Paulraj, K., & Seung, T. L. (2013). Development and characterization of novel probiotic-residing pullulan/starch edible films. Food Chem. 141(2): 1041–1049. 10.1016/j.foodchem.2013.03.103

Peng, J. (2022). Latest advances in preservation technology for fresh fruit and vegetables. Foods. 11(20): 3236. 10.3390/foods11203236

Pereira, L. G., Silva, K. S. S., Carvalho, M. C., Almeida, T. A., Silva, F. S., Gomes, P. G., Fernandes, M. F., & Kumar, N. (2019). Edible chitosan films and their nanosized counterparts exhibit antimicrobial activity and enhanced mechanical and barrier properties. Molecules. 24(1): 127. 10.3390/molecules24010127

Pinto, L., Vinderola, G., Rocchetti, G., & Cichoski, A. (2016). The effect of locust bean gum (LBG)-based edible coatings carrying biocontrol yeasts against Penicillium digitatum and Penicillium italicum, causal agents of postharvest decay of mandarin fruit. Food Micro. 58: 87–94. 10.1016/j.fm.2016.03.014

Pitto, L., Iannetta, A., & Bernbom, F. (2015). Control of spoilage Pseudomonas spp. on fresh cut vegetables by neutral electrolyzed water. Food Micro. 50: 102–108. 10.1016/j.fm.2015.04.003

Qiong, T., Xiaodong, Z., Wen, C., Xiang, Y., & Pengcheng, T. (2021). Metabolomics reveals key resistant responses in tomato fruit induced by Cryptococcus laurentii. Food Chem. Molecular Sci. 100066. 10.1016/j.fochms.2021.100066

Rajabian, M., Bonyadian, M., Abbasvali, M., & Khanjari, A. (2019). Effects of potato starch edible coating containing Ziziphora clinopodioides and Thymus daenensis essential oils on chemical organoleptic properties of chicken breast. J Veterinary Res. 74(4): 450–463. 10.22059/JVR.2018.237327.2662

Rodríguez, J. M., Martínez, M. I., & Kok, J. (2002). Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Critical Rev. Food Sci., and Nutr. 42(2): 91–121. 10.1080/10408690290825475

Rouling, L., Qiya, Y., Jinwei, X., Solairaj, D., Ngea, G. L. N., & Hongyin, Z. (2022). Study on the biocontrol effect and physiological mechanism of Hannaella sinensis on the blue mold decay of apples. Int. J of Food Micro. 382: 109931. 10.1016/J.IJFOODMICRO.2022.109931

Sami, R., Elhakem, A., Alharbi, M., Benajiba, N., Fikry, M., & Helal, M. (2021). The combined effect of coating treatments to nisin, nano-silica, and chitosan on oxidation processes of stored button mushrooms at 4°C. Scientific Reports. 11(1): 6031. 10.1038/S41598-021-85610-X

Sánchez-Ortega, I., García-Almendárez, B. E., Santos-López, E. M., Amaro-Reyes, A., Barboza-Corona, J. E., & Regalado, C. (2014). Antimicrobial edible films and coatings for meat and meat products preservation. Sci. World J. 2014: 248935. 10.1155/2014/248935

Schillinger, U., Geisen, R., & Holzapfel, W. H. (1996). Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends in Food Sci. & Tech. 7(5): 158–164. 10.1016/0924-2244(96)81256-8

Shaoling, C., Yapei, Z., Ruitao, C., Jinliang, Y., & Xingyu, J. (2016). Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties. Nanoscale. 8(2): 973–978. 10.1039/c5nr07647a

Sharma, N., Verma, U., & Awasthi, P. (2006). A combination of the yeast Candida utilis and chitosan controls fruit rot in tomato caused by Alternaria alternata (Fr.) Keissler and Geotrichum candidum Link ex Pers. J of Horti. Sci., and Bio. 81(6): 1043–1051. 10.1080/14620316.2006.11512170

Sharma, R. R., Dinesh, R., & Rajbir, S. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Bio. Cont. 50(3): 205–221. 10.1016/j.biocontrol.2009.05.001

Sharma, R., Verma, M., & Awasthi, P. (2006). A combination of the yeast Candida utilis and chitosan controls fruit rot in tomato caused by Alternaria alternata (Fr.) Keissler and Geotrichum candidum Link ex Pers. J Horti. Sci., and Bio. 81(6): 1043–1051. 10.1080/14620316.2006.11512170

Shen, J., Xia, J., Gao, Z. L., Liu, L., Xu, Q., & He, R. (2013). Effects of tea polyphenols, lysozyme, and chitosan on improving preservation quality of pomfret fillet. Adv. Materials Res. 781–784: 1582–1588. 10.4028/www.scientific.net/AMR.781-784.1582

Shi C, Jia L, Tao H, Hu W, Li C, Aziz T, Al-Asmari F, Sameeh MY, Cui H, Lin L. (2024). Fortification of cassava starch edible films with Litsea cubeba essential oil for chicken meat preservation. Int J Biol Macromol. 276(Pt 2): 133920. 10.1016/j.ijbiomac.2024.133920

Shi C, Jia L, Tao H, Li C, Aziz T, Alhomrani M, Cui H, Lin L. (2024b). Effects of guar gum/chitosan edible films functionalized with citronellal/HPβCD inclusion complex on Harbin red sausage preservation. Int J Biol Macromol. 282(Pt 6): 137312. 10.1016/j.ijbiomac.2024.137312

Shi C, Xu R, Hu W, Aziz T, Alhomrani M, Cui H, Lin L. (2025). Fabrication of alginate dialdehyde-gelatin crosslinked hydrogels incorporated with cinnamaldehyde nanoparticles for meat preservation. Int J Biol Macromol. 298: 140063. 10.1016/j.ijbiomac.2025.140063

Shouket S, Khurshid S, Khan J, Batool R, Sarwar A, Aziz T, Alhomrani M, Alamri AS, Sameeh MY, Zubair Filimban F. (2023). Enhancement of shelf-life of food items via immobilized enzyme nanoparticles on varied supports. A sustainable approach towards food safety and sustainability. Food Res Int. 169: 112940. 10.1016/j.foodres.2023.112940

Shouket, S., khurshid, S., Khan, J. Nadeem AA, Sarwar A, Aziz T, Alotaibi MN, Alamri AS, Alhomrani M, Sameeh MY. (2024). Biosynthetically produced glucose oxidase immobilized silver nanoparticle bioconjugate treatment improves the shelf life of mango fruit: an innovative method towards food safety and sustainability. Biomass Conv. Bioref. 14: 31357–31368. 10.1007/s13399-023-04753-1

Silva, S. P. M., Teixeira, J. A., & Silva, C. C. G. (2023). Recent advances in the use of edible films and coatings with probiotic and bacteriocin-producing lactic acid bacteria. Food Biosci. 56: 103196. 10.1016/j.fbio.2023.103196

Tahir, H. E., Arslan, M., Mahunu, G. K., Hashim, S. B. H., Jiyong, S., Wen, Z., Xiaowei, H., Adam, M. A., Abdalla Isameldeen, I. H., & Xiaobo, Z. (2022). Efficacy of biologically active agents and antagonistic yeast to control the incidence of postharvest diseases: A meta-analysis and meta-regression. Biological Cont. 172: 104952. 10.1016/j.biocontrol.2022.104952

Tapia, M. S., Rojas Graü, M. A., Rodríguez, F. J., Ramírez, J., Carmona, A., & Martin-Belloso, O. (2007). Alginate- and gellan-based edible films for probiotic coatings on fresh-cut fruits. J of Food Sci. 72(4): E190–E196. 10.1111/j.1750-3841.2007.00318.x

Tony, J. (2010). Inactivation of Listeria monocytogenes in skim milk and liquid egg white by antimicrobial bottle coating with polylactic acid and nisin. J of Food Sci. 75(2): M83-M88. 10.1111/j.1750-3841.2009.01480.x

Usman, M., Zia, A., Nauman Ahmad, M., Alam, S., Ullah, N., Us Salam, M. B., Aziz, T., Alhomrani, M., Alsanie, W. F., & Alamri, A. S. (2024). Extraction and characterization of cellulose from agricultural waste of hemp (Cannabis sativa) and parthenium (Parthenium hysterophorus). Italian J of Food Sci. 36(4): 17–25. 10.15586/ijfs.v36i4.2659

Wan, J., Gordon, J. B., Muirhead, K., Hickey, M. W., & Coventry, M. J. (1997). Incorporation of nisin in micro-particles of calcium alginate. Letters in Applied Microbio. 24(3): 153–158. 10.1046/j.1472-765x.1997.00294.x

Wang, J., Lin, J. X., Xiao, W., Jia, X., Han, N., Wang, H., Ji, S., & Pan, J. (2018). Blend of organic acids and medium chain fatty acids prevents the inflammatory response and intestinal barrier dysfunction in mice challenged with enterohemorrhagic Escherichia coli O157: H7. Inter. Immun. 58: 64–71. 10.1016/j.intimp.2018.03.014

Wang, L., Du, G., Guo, H., Zhang, Q., Qi, X., Yu, W., Jiang, C., & Xu, H. (2019). Volatile organic compounds of Hanseniaspora uvarum increase strawberry fruit flavor and defense during cold storage. Food Sci. & Nutr. 7(8): 2625–2635. 10.1002/fsn3.1116

Wang, M., Zhao, L., Zhang, X., Solairaj, D., Mandour, H. A., Yan, Q., Jiang, Z., & Zhang, H. (2018). Study on biocontrol of postharvest decay of table grapes caused by Penicillium rubens and the possible resistance mechanisms by Yarrowia lipolytica. Bio. Cont. 130: 110–117. 10.1016/j.biocontrol.2018.11.004

Wang, X., Pei, J., Zhang, C., Yang, C., Chen, H., & Xu, B. (2015). Structure and properties of moisture-resistant konjac glucomannan films coated with shellac/stearic acid coating. Carbohydrate Poly. 118: 119–125. 10.1016/j.carbpol.2014.11.009

Wang, X., Sun, J., & Wu, R. (2018). Effect of Burkholderia contaminans on postharvest diseases and induced resistance of strawberry fruits. The Plant Pathol. J. 34(5): 403–411. 10.5423/ppj.oa.02.2018.0031

Wang, Y., Pallen, D. P. A., & Pothin, K. L. P. (2024). Enterococcus faecium: Evolution, adaptation, pathogenesis, and emerging therapeutics. Nature Rev. Micro. 22(11): 705–721. 10.1038/s41579-024-01058-6

Wu, J., Zhang, M., Luo, T., Liu, T., Ren, Q., Zhou, Z., Yang, Z., Aziz, T., Shami, A., Al-Asmari, F., Fahad Alabbosh, K., & El-Ghareeb Keshek, D. (2025). Assessing the effects of homofermentative Lactiplantibacillus plantarum K25 and heterofermentative Limosilactobacillus fermentum 13-1 on the flavor and functional characteristics of fermented milk analyzed by metabolomics approach. Italian J Food Sci. 37(1): 150–181. 10.15586/ijfs.v37i1.2779

Xie, Y., Zhang, M., Gao, X., Shao, Y., Liu, H., Jin, J., Yang, W., & Zhang, H. (2018). Development and antimicrobial application of plantaricin BM-1 incorporating a PVDC film on fresh pork meat during cold storage. J Appl. Micro. 125(4): 1108–1116. 10.1111/jam.13912

Yan, F., Ying, X., Dongfeng, W., Li, Z., Jipeng, S., Liping, S., & Bin, Z. (2009). Effect of alginate coating combined with yeast antagonist on strawberry (Fragaria × ananassa) preservation quality. Postharvest Bio., and Techn. 53(1): 84–90. 10.1016/j.postharvbio.2009.03.002

Yanli, Y., Yunna, Z., Xuewu, D., Xin, M., & Yanshen, L. (2023). Research progress on the application of different preservation methods for controlling fungi and toxins in fruit and vegetables. Critical Rev. in Food Sci., and Nutr. 63(33): 11–12. 10.1080/10408398.2022.2101982

Ying, T., Chao, J., Li, H., & Zhang, X. (2009). Indole-3-acetic acid improves postharvest biological control of blue mold rot of apple by Cryptococcus laurentii. Phytopathology. 99(3): 258–264. 10.1094/PHYTO-99-3-0258

Yinzhe, R., & Shaoying, Z. (2013). Effect of carboxymethyl cellulose and alginate coating combined with brewer yeast on postharvest grape preservation. Inter. Sch. Res. Notices. 2013: 871396. 10.1155/2013/871396

YoungMin, K., DuckSoon, A., HyunJin, P., JongMoon, P., & DongSun, L. (2002). Properties of nisin-incorporated polymer coatings as antimicrobial packaging materials. Pack. Tech., and Sci. 15(5): 247–254. 10.1002/pts.594

YoungMin, K., HyunDong, P., & DongSun, L. (2002). Shelf-life characteristics of fresh oysters and ground beef as affected by bacteriocin-coated plastic packaging film. J Sci. of Food and Agri. 82(9): 998–1002. 10.1002/jsfa.1125

Yuan, X., Jie, Z., Pingping, Z., Joe, M. R., Dasong, L., & Peng, Z. (2024). Improving the microbiological safety and quality of aquatic products using nonthermal processing. Comprehensive Rev. Food Sci., and Food Safety. 23(3): e13368–e13368. 10.1111/1541-4337.13368

Zahidova, F., Yildiz, S., Özdemir, A., Gülfen, M., & Yemiş, G. P. (2023). Modification of poly(L-lactic acid)-based films and evaluation of physical and antibacterial properties by using multivariate data analysis. Inter. J Bio. Macromolecules. 30(241): 124583. 10.1016/j.ijbiomac.2023.124583

Ze, W., Lingli, H., Xinyu, F., Feng, C., Ruijie, W., Qingjun, K., Keyu, S., Jianhua, G., Jun, G. (2023). Development of functional, sustainable pullulan-sodium alginate-based films by incorporating essential oil microemulsion for chilled pork preservation. Inter. J Bio. Macromolecules. 253(P6): 127257–127257. 10.1016/J.IJBIOMAC.2023.127257

Zhang J.N., Zarin, M.A., Chee Keong, L., Joo Shun, T. (2020). Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: a review. RSC Adv. 10(64): 38937–38964. 10.1039/d0ra06161a

Zhang, M., Gu, X., Zhang, H., Li, H., Jiang, J., Yu, W., & Xu, Y. (2017). Development and antilisterial activity of PE-based biological preservative films incorporating plantaricin BM-1. FEMS Microbio. Letters. 364(7): fnw283. 10.1093/femsle/fnw283

Zhang, Q., Zhang, J., Zhang, J., Xu, D., Li, Y., Li, Y., Zhang, X., Zhang, R., Wang, Z., & Wu, P. (2021). Antimicrobial effect of tea polyphenols against foodborne pathogens: A review. J Food Prot. 84(10): 1801–1808. 10.4315/JFP-21-043

Zhang, X., Zhang, H., Yuan, Y., Wang, J., Guo, X., Li, B., Zhang, L., & Zhang, H. (2022). Metabolomic profiling and energy metabolism modulation unveil the mechanisms involved in enhanced disease resistance of postharvest broccoli by Meyerozyma guilliermondii. Scientia Horticulturae. 303: 111239. 10.1016/j.scienta.2022.111239

Zhenshuo, W., Yuan, S., Jishun, L., Xiaoli, T., Qi, W. (2022). Biological control of postharvest fungal decays in citrus: a review. Critical Rev. Food Sci., and Nutr. 62(4): 11–10. 10.1080/10408398.2020.1829542

ZhiMing, W., Cheng Jian, L., Shuai Wen, Z., Zeng Xin, Q., Man Ming, Z., Kun Tai, L. (2018). Inhibitory activities of metabolite produced by Streptomyces sp. N2 and its efficacy on fruit storage. Southwest China J of Agri. Sci. 31(7): 1393−1398. 10.16213/j.cnki.scjas.2018.7.011

Zhou, X., Ni, W., Xu, J., Zhang, H., Li, X., & Chen, Z. (2022). Characterization of antifungal cyclic dipeptides of Lacticaseibacillus paracasei ZX1231 and active packaging film prepared with its cell-free supernatant and bacterial nanocellulose. Food Res. Inter. 162: 12024. 10.1016/j.foodres.2022.112024

Zunyang, S., Feng, L., Hui, G., Yunfeng, X., Quanjuan, F., Dapeng, L. (2017). Combination of nisin and ε-polylysine with chitosan coating inhibits the white blush of fresh-cut carrots. Food Cont. 74(2017): 34–44. 10.1016/j.foodcont.2016.11.026