Nutritional and biochemical characterization of lentil, chickpea, and quinoa
Main Article Content
Keywords
antioxidants, cereals, chickpeas, lentils, protein, pulses, quinoa
Abstract
In this study, a random sample of chickpeas, lentils, and quinoa was characterized physically, chemically, and nutritionally. The results showed that lentils had a higher level of protein (21%), while chickpeas had higher moisture content (16.1%). Lentils and quinoa contained the same amount of fiber (14%). Mineral content was evaluated in all samples, with quinoa showing the highest amounts of copper (79.63 mg/kg), zinc (24.3 mg/kg), phosphorus (4064 mg/kg), and magnesium (3625 mg/kg). Chickpeas, on the other hand, had higher amounts of sodium (2133 mg/100g) and calcium (1304 mg/100g). Chickpeas also contained higher amounts of ascorbic acid (67 mg/100g), thiamine (1.83 mg/100g), riboflavin (2.03 mg/100g), niacin (23.3 mg/100g), and α-tocopherol (29 mg/100g) compared to quinoa and lentils. Lentils had a higher amount of folate (477.5 µg/100g). Chickpeas also contained higher levels of leucine (7.13 g/100g) and phenylalanine (5.7 g/100g). The total amino acid content in lentils was 37.89 g/100g, with the highest amounts of leucine (7.2 g/100g) and lysine (7.26 g/100g). Quinoa contained the richest amount of leucine (7.03 g/100g), and the total amino acid content in quinoa was 34.93 g/100g. In conclusion, all the samples showed different nutrient values across the grains. Quinoa exhibited higher values in bioactive compounds. Due to their higher nutritional content, these grains are recommended for daily intake.
References
Alrosan, M., Tan, T. C., Mat Easa, A., Gammoh, S., & Alu’datt, M. H. (2021). Effects of fermentation on the quality, structure, and nonnutritive contents of lentil (Lens culinaris) proteins. Journal of Food Quality, 2021, 1–7. https://doi.org/10.1155/2021/5556450
American Association of Cereal Chemists. (2000). Approved methods of the American Association of Cereal Chemists. American Association of Cereal Chemists.
Ando, H., Chen, Y. C., Tang, H., Shimizu, M., Watanabe, K., & Mitsunaga, T. (2002). Food components in fractions of quinoa seed. Food Science and Technology Research, 8(1), 80–84. https://doi.org/10.3136/fstr.8.80
AOAC. (2000). Official methods of analysis (15th ed.). Association of Analytical Chemists.AOAC. (AOAC. (2000). Official Methods of Analysis.Association of Analytical Chemist, (15th Ed.)Virginia, 22201, Arlington, USA
Bawachkar, R. R., More, D. R., & Praveen, B. R. (2021). Quinoa bar a novel food: A review. SP-10(6), 82–86.
Benavente-García, O., & Castillo, J. (2008). Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. Journal of Agricultural and Food Chemistry, 56(18), 6185–6205. https://doi.org/10.1021/jf8006568
Biel, W., Bobko, K., & Maciorowski, R. (2009). Chemical composition and nutritive value of husked and naked oats grain. Journal of Cereal Science, 49(3), 413–418. https://doi.org/10.1016/j.jcs.2009.01.009
Boukid, F. (2021). Chickpea (Cicer arietinum L.) protein as a prospective plant‐based ingredient: A review. International Journal of Food Science & Technology, 56(11), 5435–44. https://doi.org/10.1111/ijfs.15046
Boye, J., Zare, F., & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties, and applications in food and feed. Food Research International, 43(2), 414–431. https://doi.org/10.1016/j.foodres.2009.09.003
Brummer, Y., Kaviani, M., & Tosh, S. M. (2015). Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Research International, 67, 117–125. https://doi.org/10.1016/j.foodres.2014.11.009
Chelladurai, V., & Erkinbaev, C. (2020). Lentils. In Pulses 2020 (pp. 129–143). Springer, Cham. https://doi.org/10.1007/978-3-030-41376-7_8
Díaz-Batalla L., Widholm J. M., Fahey G. C., Castaño-Tostado E., Paredes-López O. (2006). Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry. 2006 Mar 22;54(6), 2045–52. https://doi.org/10.1021/jf051706l
Dmitrienko, S. G., Kudrinskaya, V. A., & Apyari, V. V. (2012). Methods of extraction, preconcentration, and determination of quercetin. Journal of Analytical Chemistry, 67(4), 299–311. https://doi.org/10.1134/S106193481204003X
Faris, M. E., Takruri, H. R., & Issa, A. Y. (2013). Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Mediterranean Journal of Nutrition and Metabolism, 6(1), 3–16. https://doi.org/10.3233/s12349-012-0109-8
Garg, P., & Brar, J. K. (2017). Development and organoleptic evaluation of nutritious bars by using defatted peanut flour, roasted soybean seeds for gym trainees. Chemical Science and Review Letters, 6(23), 2051–2057.
Graf B. L., Rojas‐Silva P., Rojo L. E., Delatorre‐Herrera J., Baldeón M. E., Raskin I. (2015). Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety., 14(4), 431–45. https://doi.org/10.1111/1541-4337.12135
Grasso, N., Lynch, N. L., Arendt, E. K., & O'Mahony, J. A. (2022). Chickpea protein ingredients: A review of composition, functionality, and applications. Comprehensive Reviews in Food Science and Food Safety, 21(1), 435–452 https://doi.org/10.1111/1541-4337.12878
Han H., Baik B. K. (2008). Antioxidant activity and phenolic content of lentils (Lens culinaris), chickpeas (Cicer arietinum L.), peas (Pisum sativum L.) and soybeans (Glycine max), and their quantitative changes during processing. International Journal of Food Science & Technology., 43(11), 1971–8. https://doi.org/10.1111/j.1365-2621.2008.01800.x
Hirose Y., Fujita T., Ishii T., & Ueno N. (2010). Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chemistry., 2010 119(4), 1300–1306. https://doi.org/10.1016/j.foodchem.2009.09.008
Ho S.S., & Pal S. (2005). Margarine phytosterols decrease the secretion of atherogenic lipoproteins from HepG2 liver and Caco2 intestinal cells. Atherosclerosis., 2005 Sep 1;182(1), 29–36. https://doi.org/10.1016/j.atherosclerosis.2005.01.031
Jan, K.N., Panesar, P.S., & Singh, S. (2019). Effect of moisture content on the physical and mechanical properties of quinoa seeds. International Agrophysics, 33(1), 107–115. https://doi.org/10.31545/intagr/104374
Jukanti, A.K., Gaur, P.M., Gowda, C.L., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. British Journal of Nutrition, 108(S1), S11–S26. https://doi.org/10.1017/S0007114512000797
Kalogeropoulos N., Chiou A., Ioannou M., Karathanos V. T., Hassapidou M., & Andrikopoulos N.K. (2010). Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chemistry, 121(3), Food Chem 121:682–690. https://doi.org/10.1016/j.foodchem.2010.01.005
Kaur, R., & Prasad, K. (2021). Technological, processing and nutritional aspects of chickpea (Cicer arietinum) – A review. Trends in Food Science & Technology, 109, 448–463. https://doi.org/10.1016/j.tifs.2021.01.044
Kaur, R., Ahluwalia, P., Sachdev, P.A., & Kaur, A. (2018). A development of gluten-free cereal bar for gluten intolerant population by using quinoa as major ingredient. Journal of Food Science and Technology, 55(9), 3584–3591. https://doi.org/10.1007/s13197-018-3284-x
Khattak, A.M., Ullah, S., Anjum, F., Shah, H.U., & Alam, S. (2021). Proximate composition and mineral content of selected chickpea cultivars. Sarhad Journal of Agriculture, 37(2), 683–689. https://doi.org/10.17582/journal.sja/2021/37.2.683.689
Lagarda, M. J., García-Llatas, G., & Farré, R. (2006). Analysis of phytosterols in foods. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1486–1496. https://doi.org/10.1016/j.jpba.2006.02.052
Lake, L., Kutchartt, D. G., Calderini, D. F., & Sadras, V. O. (2021). Critical developmental period for grain yield and grain protein concentration in lentil. Field Crops Research, 270, 108203. https://doi.org/10.1016/j.fcr.2021.108203
Lebiedzińska, A., Marszałł, M. L., Kuta, J., & Szefer, P. (2007). Reversed-phase high-performance liquid chromatography method with coulometric electrochemical and ultraviolet detection for the quantification of vitamins B1 (thiamine), B6 (pyridoxamine, pyridoxal, and pyridoxine) and B12 in animal and plant foods. Journal of Chromatography A, 1173(1–2), 71–80. https://doi.org/10.1016/j.chroma.2007.09.072
Lee M.J., & Sim K.H. (2018). Nutritional value and the kaempferol and quercetin contents of quinoa (Chenopodium quinoa Willd.) from different regions. Korean Journal of Food Science and Technology. 2018 ;50(6):), 680–7.
León-López, L., Escobar-Zúñiga, Y., Salazar-Salas, N.Y., Mora Rochín, S., Cuevas-Rodríguez, E.O., Reyes-Moreno, C., & Milán-Carrillo, J. (2020). Improving polyphenolic compounds: Antioxidant activity in chickpea sprouts through elicitation with hydrogen peroxide. Foods, 9(12), 1791. https://doi.org/10.3390/foods9121791
Liu, Y., Ragaee, S., Marcone, M.F., & Abdel-Aal, E.S. (2020). Composition of phenolic acids and antioxidant properties of selected pulses cooked with different heating conditions. Foods, 9(7), 908. https://doi.org/10.3390/foods9070908
Madurapperumage, A., Tang, L., Thavarajah, P., Bridges, W., Shipe, E., Vandemark, G., & Thavarajah, D. (2021). Chickpea (Cicer arietinum L.) as a source of essential fatty acids–A biofortification approach. Frontiers in Plant Science, 12, 2204. https://doi.org/10.3389/fpls.2021.734980
Miliauskas, G., Venskutonis, P. R., & Van Beek, T. A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 5(2), 231–237. https://doi.org/10.1016/j.foodchem.2003.05.007
Miranda, M., Vega-Gálvez, A., Martinez, E., López, J., Rodríguez, M.J., Henríquez, K., & Fuentes, F. (2012). Genetic diversity and comparison of physicochemical and nutritional characteristics of six quinoa (Chenopodium quinoa Willd.) genotypes cultivated in Chile. Food Science and Technology, 32(4), 835–843. https://doi.org/10.1590/S0101-20612012005000114
Navruz-Varli S., & Sanlier N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science. 2016 May 1;69:, 371–6. https://doi.org/10.1016/j.jcs.2016.05.004
Nongalleima, K., Ajungla, T., & Singh, C.B. (2017). Photochemical, total phenolic, total flavonoid, and total flavonol content estimation in Citrus macroptera Montruz. Journal of Medicinal Plants, 5(3), 114–118.
Nowak, V., Du, J., & Charrondière, U.R. (2015). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 193, 47–54. https://doi.org/10.1016/j.foodchem.2015.02.111
Quintero-Soto, M.F., Saracho-Peña, A.G., Chavez-Ontiveros, J., Garzon-Tiznado, J.A., Pineda-Hidalgo, K.V., Delgado-Vargas, F., & Lopez-Valenzuela, J.A. (2018). Phenolic profiles and their contribution to the antioxidant activity of selected chickpea genotypes from Mexico and ICRISAT collections. Plant Foods for Human Nutrition, 73(2), 122–129. https://doi.org/10.1007/s11130-018-0661-6
Rachwa-Rosiak, D., Nebesny, E., & Budryn, G. (2015). Chickpeas—Composition, nutritional value, health benefits, application to bread and snacks: A review. Critical Reviews in Food Science and Nutrition, 55(8), 1137–1145. https://doi.org/10.1080/10408398.2012.687418
Ramdath, D.D., Lu, Z.H., Maharaj, P.L., Winberg, J., Brummer, Y., & Hawke, A. (2020). Proximate analysis and nutritional evaluation of twenty Canadian lentils by principal component and cluster analyses. Foods, 9(2), 175. https://doi.org/10.3390/foods9020175
Repo-Carrasco, R., Espinoza, C., & Jacobsen, S.E. (2003). Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule). Food Reviews International, 19(3), 179–189. https://doi.org/10.1081/FRI-1200188843
Repo-Carrasco-Valencia, R., Hellström, J.K., Pihlava, J.M., & Mattila, P.H. (2010). Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry, 120(1), 128–133. https://doi.org/10.1016/j.foodchem.2009.09.087
Ryan E., Galvin K., O’Connor T.P., Maguire A.R., O’Brien N.M. (2007). Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods for Human Nutrition. 2007 Sep;62(3):85–91. https://doi.org/10.1007/s11130-007-0046-8
Samaranayaka, A. (2017). Lentil: Revival of poor man’s meat. In Sustainable protein sources (pp. 185–196). Academic PressSamaranayaka A. Lentil: revival of poor man’s meat. InSustainable protein sources 2017 Jan 1 (pp. 185–196). Academic Press. https://doi.org/10.1016/B978-0-12-802778-3.00011-1
Silva, I.Q., Oliveira, B.C.F., Lopes, A.S., & Pena, R.S. (2009). Obtenção de barra de cereais adicionada do resíduo da indústria de maracujá. Alimentos e Nutrição, 20(2), 321–329.
Singh B., Singh J. P., Shevkani K., Singh N., Kaur A. (2017). Bioactive constituents in pulses and their health benefits. Journal of Food Science and Technology., 54(4), 858–70. https://doi.org/10.1007/s13197-016-2391-9
Singh, J., Srivastava, R.P., Gupta, S., Basu, P.S., & Kumar, J. (2016). Genetic variability for vitamin B9 and total dietary fiber in lentil (Lens culinaris L.) cultivars. International Journal of Food Properties, 19(4), 936–943. https://doi.org/10.1080/10942912.2015.1048353
Summo, C., De Angelis, D., Ricciardi, L., Caponio, F., Lotti, C., Pavan, S., & Pasqualone, A. (2019). Nutritional, physico-chemical and functional characterization of a global chickpea collection. Journal of Food Composition and Analysis, 84, 103306. https://doi.org/10.1016/j.jfca.2019.103306
Takruri, H.R., & Issa, A.Y. (2013). Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Mediterranean Journal of Nutrition and Metabolism, 6(1), 3–16. https://doi.org/10.3233/s12349-012-0109-8
Tosh, S.M., & Yada, S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International, 43(2), 450–460. https://doi.org/10.1016/j.foodres.2009.09.005
Vega-Gálvez, A.V., Miranda, M., Vergara, J., Uribe, E., & Puente, L. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 90(15), 2541–2547. https://doi.org/10.1002/jsfa.4158
Vega‐Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., & Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 90(15), 2541–2547. https://doi.org/10.1002/jsfa.4158
Wallace, T.C., Murray, R., & Zelman, K.M. (2016). The nutritional value and health benefits of chickpeas and hummus. Nutrients, 8(12), 766. https://doi.org/10.3390/nu8120766
Wang, J., Li, Y., Li, A., Liu, R.H., Gao, X., Li, D., Kou, X., & Xue, Z. (2021). Nutritional constituent and health benefits of chickpea (Cicer arietinum L.): A review. Food Research International, 150, 110790. https://doi.org/10.1016/j.foodres.2021.110790
Xu, B., Chang S. K. C. (2011) Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the Northern United States. J Agric Food Chem., 58, 1509–1517. https://doi.org/10.1021/jf903532y