Biological synthesis of iron nanoparticles: characterization and therapeutic potential using Grewia optiva leaf extract

Main Article Content

Khushbakht Asad https://orcid.org/0009-0009-9269-4719
Muhammad Salman Khan https://orcid.org/0009-0004-0717-537X
Sehrish Asad
Farhad Badshah https://orcid.org/0000-0001-6971-0957
Eliana Ibánez-Arancibia https://orcid.org/0000-0001-7174-3694
Muhammad Bilal https://orcid.org/0000-0002-7911-8014
Mushtaq Ahmad Khan https://orcid.org/0000-0001-7561-5147
Patricio R. De los Ríos-Escalante https://orcid.org/0000-0001-5056-7003
Sohail Anjum
Hamza Badamasi
Christian Tuemmers

Keywords

biological activities, bio fabrication, FeCl3, FeNPs, Grewia optiva

Abstract

Grewia optiva leaf extract was used as a reducing and stabilizing agent to create iron nanoparticles (FeNPs) in an eco-friendly manner. Before being extracted in an aqueous solution for 20 min at 100 ºC using Jeldal equipment, the leaves were meticulously dried, washed, and dried again. The extract was used to dissolve iron (III) chloride (FeCl3) to bio-fabricate iron nanoparticles (FeNPs). Temperature, duration, pH, and salt effect were the parameters used to optimize the bio-fabricated FeNPs. It was found that a temperature of 85°C, pH ranging from 6 to 7, and a 24-h duration were ideal for the bio-fabrication of FeNPs. The FeNPs were analyzed through various methods, i.e., Fourier-transform infrared spectroscopy (FT-IR) for the identification of chemical bonds and functional groups, X-ray diffraction (XRD) for crystalline structure, and transmission electron microscopy (TEM) for morphological analysis. Scanning electron microscopy was used to analyze the shape and size of the nanoparticles. FeNPs exhibited noteworthy biological potential through their ability to scavenge free radicals and their demonstrated phytotoxic, insecticidal, analgesic, antibacterial, and antipyretic properties. The findings showed that the aqueous extract of Grewia optiva contained FeNPs that could be used to create innovative pharmaceutical and agricultural medicines.

Abstract 81 | PDF Downloads 52 HTML Downloads 0 XML Downloads 7

References

Acay, H. (2021). Utilization of Morchella esculenta-mediated green synthesis golden nanoparticles in biomedicine applications. Preparative Biochemistry & Biotechnology, 51(2), 127–136. 10.1080/10826068.2020.1799390

Ahmed, M.S., Begum, H., & Kim, Y.B. (2020). Iron nanoparticles implanted metal-organic-frameworks based Fe–N–C catalysts for high-performance oxygen reduction reaction. Journal of Power Sources, 451, 227733. 10.1016/j.jpowsour.2020.227733

Ahmed, S.H., Hameed, R.S., Yousif, A.M., & Jazar, Z.H. (2023). Studying the antibacterial and insecticidal properties of rosemary extract by iron nanoparticles prepared by using ultrasound. South Asian Research Journal of Applied Medical Sciences, 5(2), 19–25. 10.36346/sarjams.2023.v05i02.001

Akhbari, M., Hajiaghaee, R., Ghafarzadegan, R., Hamedi, S., & Yaghoobi, M. (2019). Process optimisation for green synthesis of zero-valent iron nanoparticles using Mentha piperita. IET Nanobiotechnology, 13(2), 160–169. 10.1049/iet-nbt.2018.5040

ALISHA, AS., & Thangapandiyan, S. (2019). Comparative bioassay of silver nanoparticles and malathion on infestation of red flour beetle, Tribolium castaneum. The Journal of Basic and Applied Zoology, 80, 1–10. 10.1186/s41936-019-0124-0

Asad, K., Shams, S., Ibáñez-Arancibia, E., De los Ríos-Escalante, P.R., Badshah, F., Ahmad, F., Khan, M.S., & Khan, A. (2024). Anti-inflammatory, antipyretic, and analgesic potential of chitin and chitosan derived from cockroaches (Periplaneta americana) and termites. Journal of Functional Biomaterials, 15, 80. 10.3390/jfb15030080

Asad, S., Anwar, N., Shah, M., Anwar, Z., Arif, M., Rauf, M., Ali, K., Shah, M., Murad, W., Albadrani, G.M., & Altyar, A.E. (2022). Biological synthesis of silver nanoparticles by Amaryllis vittata (L.) Herit: from antimicrobial to biomedical applications. Materials, 15(16), 5478. 10.3390/ma15165478

Bhuiyan, M.S.H., Miah, M.Y., Paul, S.C., Aka, T.D., Saha, O., Rahaman, M.M., Sharif, M.J.I., Habiba, O., & Ashaduzzaman, M. (2020). Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon, 6(8), 10.1016/j.heliyon.2020.e04603

Buarki, F., AbuHassan, H., Al Hannan, F., & Henari, F.Z. (2022). Green synthesis of iron oxide nanoparticles using Hibiscus rosa sinensis flowers and their antibacterial activity. Journal of Nanotechnology, 2022(1), 5474645. 10.1155/2022/5474645

Chaudhary, P., Sharma, R., Rawat, S., & Janmeda, P. (2023). Antipyretic medicinal plants, phytocompounds, and green nanoparticles: an updated review. Current Pharmaceutical Biotechnology, 24(1), 23–49. 10.2174/1389201023666220330005020

Chopra, H., Bibi, S., Mishra, A.K., Tirth, V., Yerramsetty, S.V., Murali, S.V., Ahmad, S.U., Mohanta, Y.K., Attia, M.S., Algahtani, A., & Islam, F. (2022). Nanomaterials: a promising therapeutic approach for cardiovascular diseases. Journal of Nanomaterials, 2022(1), 4155729. 10.1155/2022/4155729

Dash, A., Ahmed, M.T., & Selvaraj, R. (2019). Mesoporous magnetite nanoparticles synthesis using the Peltophorum pterocarpum pod extract, their antibacterial efficacy against pathogens and ability to remove a pollutant dye. Journal of Molecular Structure, 1178, 268–273. 10.1016/j.molstruc.2018.10.042

Dastagir, G. & Hussain, F. (2013). Phytotoxic and insecticidal activity of plants of family Zygophyllaceae and Euphorbiaceae. Sarhad Journal of Agriculture, 29(1), 83–91. 10.5897/jmpr12.539

Demirezen, D.A., Yıldız, Y.Ş., & Yılmaz, D.D. (2019). Amoxicillin degradation using green synthesized iron oxide nanoparticles: Kinetics and mechanism analysis. Environmental Nanotechnology, Monitoring & Management, 11, 100219. 10.1016/j.enmm.2019.100219

Ebrahiminezhad, A., Zare-Hoseinabadi, A., Berenjian, A., & Ghasemi, Y. (2017). Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Processing and Synthesis, 6(5), 469–475. 10.1515/gps-2016–0133

Hammad, E.N., Salem, S.S., Mohamed, A.A., & El-Dougdoug, W. (2022). Environmental impacts of ecofriendly iron oxide nanoparticles on dyes removal and antibacterial activity. Applied Biochemistry and Biotechnology, 194(12), 6053–6067. 10.1007/s12010-022-04105-1

Hooda, R. & Sharma, M. (2020). Green synthesis, characterization and antibacterial activity of iron oxide nanoparticles. Plant Archives, 10.21203/rs.3.rs-3808096/v1

Iftikhar, M., Zahoor, M., Naz, S., Nazir, N., Batiha, G.E.S., Ullah, R., Bari, A., Hanif, M. & Mahmood, H.M. (2020). Green synthesis of silver nanoparticles using Grewia optiva leaf aqueous extract and isolated compounds as reducing agent and their biological activities. Journal of Nanomaterials, 2020(1), 8949674. 10.1155/2020/8949674

Jagaran, K. & Singh, M., 2020. Nanomedicine for COVID-19: potential of copper nanoparticles. Biointerface Research in Applied Chemistry, 11(3), 10716–10728. 10.33263/briac113.1071610728

Kalashgarani, M.Y. & Babapoor, A. (2022). Application of nano-antibiotics in the diagnosis and treatment of infectious diseases. Advances in Applied NanoBio-Technologies, 3(1), 22–35. 10.1016/b978-0-323-91201-3.00008-6

Karpagavinayagam, P. & Vedhi, C. (2019). Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum, 160, 286–292. 10.1016/j.vacuum.2018.11.043

Keshari, A.K., Srivastava, R., Singh, P., Yadav, V.B. & Nath, G. (2020). Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. Journal of Ayurveda and Integrative Medicine, 11(1), 37–44. 10.1016/j.jaim.2017.11.003

Keshari, A.K., Srivastava, R., Singh, P., Yadav, V.B., & Nath, G. (2020). Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. Journal of Ayurvedic Herbal and Integrative Medicine, 11(1), 37–44. 10.1016/j.jaim.2017.11.003 PMid:30120058.

Khan, D.A., Ali, Z., Iftikhar, S., Amraiz, D., Zaidi, N.U.S.S., Gul, A., & Babar, M.M. (2018). Role of phytohormones in enhancing antioxidant defense in plants exposed to metal/metalloid toxicity. Plants Under Metal and Metalloid Stress: Responses, Tolerance and Remediation, 367–400.

Liu, A., Liu, J., Pan, B., & Zhang, W.X. (2014). Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water. RSC Advances, 4(101), 57377–57382. 10.1039/c4ra08988j

Mirza, A.U., Kareem, A., Nami, S.A., Khan, M.S., Rehman, S., Bhat, S.A., Mohammad, A., & Nishat, N. (2018). Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: Characterization, antibacterial and antioxidant activity. Journal of Photochemistry and Photobiology B: Biology, 185, 262–274. 10.1016/j.jphotobiol.2018.06.009

Mofolo, M.J., Kadhila, P., Chinsembu, K.C., Mashele, S., & Sekhoacha, M. (2020). Green synthesis of silver nanoparticles from extracts of Pechuel-loeschea leubnitziae: their anti-proliferative activity against the U87 cell line. Inorganic Nano-Metal Chemistry, 50(10), 949–955. 10.1080/24701556.2020.1729191

Muthusamy, R., Ramkumar, G., Kumarasamy, S., Chi, N.T.L., Al Obaid, S., Alfarraj, S. & Karuppusamy, I. (2023). Synergism and toxicity of iron nanoparticles derived from Trigonella foenum-graecum against pyrethriod treatment in S. litura and H. armigera (Lepidoptera: Noctuidae). Environmental Research, 231, 116079. 10.1016/j.envres.2023.116079

Nahari, M.H., Al Ali, A., Asiri, A., Mahnashi, M.H., Shaikh, I.A., Shettar, A.K. & Hoskeri, J. (2022). Green synthesis and characterization of iron nanoparticles synthesized from aqueous leaf extract of vitex leucoxylon and its biomedical applications. Nanomaterials, 12(14), 2404. 10.3390/nano12142404

Naseem, T. & Farrukh, M.A. (2015).Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. Journal of Chemistry, 2015(1), 912342. 10.1155/2015/912342

Omidian, H., Babanejad, N., & Cubeddu, L.X. (2023). Nanosystems in cardiovascular medicine: advancements, applications, and future perspectives. Pharmaceutics, 15(7), 1935. 10.3390/pharmaceutics15071935

Păduraru, D.N., Ion, D., Niculescu, A.G., Mușat, F., Andronic, O., Grumezescu, A.M. & Bolocan, A. (2022). Recent developments in metallic nanomaterials for cancer therapy, diagnosing and imaging applications. Pharmaceutics, 14(2), 435. 10.3390/pharmaceutics14020435

Prakash, M., Chandraprabha, M.N., Krishna, R.H., Satish, H., & Kumar, S.G. (2024). Iron oxide nanoparticles for inflammatory bowel disease: Recent advances in diagnosis and targeted drug therapy. Applied Surface Science, 19, 100540. 10.1016/j.apsadv.2023.100540

Priya, Naveen, Kaur, K., & Sidhu, A.K. (2021). Green synthesis: An eco-friendly route for the synthesis of iron oxide nanoparticles. Frontiers in Nanotechnology, 3, 655062. 10.3389/fnano.2021.655062

Qamar, M., Akhtar, S., Ismail, T., Wahid, M., Barnard, R.T., Esatbeyoglu, T., & Ziora, Z.M. (2021). The chemical composition and health-promoting effects of the Grewia species—A systematic review and meta-analysis. Nutrients, 13(12), 4565. 10.3390/nu13124565

Roy, A., Singh, V., Sharma, S., Ali, D., Azad, A.K., Kumar, G., & Emran, T.B. (2022). Antibacterial and dye degradation activity of green synthesized iron nanoparticles. Journal of Nanomaterials., 2022(1), 3636481. 10.1155/2022/3636481

Sajid, M. & Płotka-Wasylka, J. (2020). Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchemical Journal, 154, 104623. 10.1016/j.microc.2020.104623

Sandhya, J., Veeralakshmi, S., & Kalaiselvam, S. (2021). Tripolyphosphate crosslinked Triticum aestivum (wheatgrass) functionalized antimicrobial chitosan: Ameliorating effect on physicochemical, mechanical, invitro cytocompatibility and cell migration properties. Journal of Biomolecular Structure and Dynamics, 39(5), 1635–1644. 10.1080/07391102.2020.1736160

Shah, M., Murad, W., Ur Rehman, N., Halim, S.A., Ahmed, M., Rehman, H., Zahoor, M., Mubin, S., Khan, A., Nassan, M.A., & Batiha, G.E.S. (2021). Biomedical applications of Scutellaria edelbergii Rech. f.: in vitro and in vivo approach. Molecules, 26(12), 3740. 10.3390/molecules26123740

Sulaiman, S., Ahmad, S., Naz, S.S., Qaisar, S., Muhammad, S., Alotaibi, A., & Ullah, R. (2022). Synthesis of copper oxide-based nanoformulations of etoricoxib and montelukast and their evaluation through analgesic, anti-inflammatory, anti-pyretic, and acute toxicity activities. Molecules, 27(4), 1433. 10.3390/molecules27041433

Sultana, T., Malik, K., Raja, N.I., Sohail, Hameed, A., Ali, A., Mashwani, Z.U.R., Baloch, M.Y.J. & Alrefaei, A.F. (2023). Phytofabrication, characterization, and evaluation of novel bioinspired selenium–iron (Se–Fe) nanocomposites using Allium sativum extract for bio-potential applications. Green Processing and Synthesis, 12(1), 20230049. 10.1515/gps-2023-0049

Tan, B., Chen, J. & Wang, W. (2023). Evaluation of the analgesic and anesthetic properties of silver nanoparticles supported over biodegradable acacia gum-modified magnetic nanoparticles. Open Chemistry, 21(1), 20230180. 10.1515/chem-2023-0180

Üstün, E., Önbaş, S.C., Çelik, S.K., Ayvaz, M.Ç. & Şahin, N. (2022). Green synthesis of iron oxide nanoparticles by using Ficus carica leaf extract and its antioxidant activity. Biointerface Research in Applied Chemistry, 12(2), 2108–2116. 10.33263/briac122.21082116

Wei, Y., Fang, Z., Zheng, L., Tan, L., & Tsang, E.P. (2016). Green synthesis of Fe nanoparticles using Citrus maxima peels aqueous extracts. Materials Letters, 185, 384–386. 10.1016/j.matlet.2016.09.029

Xu, W., Yang, T., Liu, S., Du, L., Chen, Q., Li, X., Dong, J., Zhang, Z., Lu, S., Gong, Y., & Zhou, L. (2022). Insights into the Synthesis, types and application of iron Nanoparticles: The overlooked significance of environmental effects. Environmental International, 158, 106980. 10.1016/j.envint.2021.106980

Younis, N.K., Ghoubaira, J.A., Bassil, E.P., Tantawi, H.N., & Eid, A.H. (2021). Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. Nanomedicine (N. Y., NY, U. S.), 36, 102433. 10.1016/j.nano.2021.102433