Food security through triacontanol priming: Mitigating chromium stress and boosting yield in Raphanus sativus L.

Main Article Content

Shakil Ahmed
Iqra Razzaq
Rehana Sardar
M. Nauman Ahmad
Tariq Aziz
Ashwag Shami
Nada K. Alharbi
Fahad Al-Asmari
Fakhria A. Al-Joufi
Jaza Maqbl Alshammari
Lin Lin

Keywords

nutrients content, plant growth, Raphanus sativus

Abstract

A major global concern for food security and human health is the indiscriminate discharge and consequent accumulation of heavy metals from various anthropogenic sources into the environment. Chromium (Cr) is one of the most common toxic effluents that pollute agricultural soil. Chromium intake affects plant metabolism, photosynthetic activity, growth, and productivity. In the present study, triacontanol (TRI) was exogenously supplied via seed priming and foliar spraying (10 ppm and 20 ppm) to alleviate Cr (60 mg/kg) stress in Raphanus sativus L. (radish). Chromium reduced shoot length by 65.21%, roots length by 66.28%, gas exchange attributes by 36.23%, mineral content by 52.55%, and phenol content by 11.11%, but the ascorbic acid content increased by 43.23%. Moreover, 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity increased by 26.34%, which reduced the degree of oxidative damage caused by Cr. Additionally, elevated nutritional contents (Zn+2, Mg+2, K+, and Na+), total photosynthetic pigments (34.42%) and proline contents were correlated with relatively higher levels of ascorbic acid. Interestingly, exogenous TRI administration reduced the oxidative damage caused by Cr. In general, our findings demonstrated that seed priming and foliar supplementation with TRI improved R. sativus plant’s tolerance to Cr by reducing its accumulation and restoring oxidative equilibrium.

Abstract 82 | PDF Downloads 34 HTML Downloads 0 XML Downloads 4

References

Abbassi M, Khan I, Rehman A, Rahman MU, Hayat A, Shah TA, Khan AA, Haq TU, Aziz T, Alharbi M, Alasmari AF, Albekairi HT. (2024). Bioremediation of Heavy Metals contaminated Soil by using Indigenous Metallotolerant Bacterial Isolates. Appl Ecol Environ Res. 22(2):1623–1648. 10.15666/aeer/2202_16231648

Ahmad R., Ali S., Rizwan M., Dawood M., Farid M., Hussain A., Wijaya L., Alyemeni M.N., and Ahmad, P. 2020. Hydrogen sulfide alleviates chromium stress on cauliflower by restricting its uptake and enhancing antioxidative system. Physiol Plant. 168(2):289–300. 10.1111/ppl.13001

Ahmed S., Amjad M., Sardar R., Siddiqui M.H., and Irfan M. 2023. Seed priming with triacontanol alleviates lead stress in Phaseolus vulgaris L. (Common Bean) through improving nutritional orchestration and morpho-physiological characteristics. Plants. 12(8):1672. 10.3390/plants12081672

Akram BM, Khan I, Rahman MU, Sarwar A, Ullah N, Rahman SR, Aziz T, Alharbi M, Alshammari A. (2023). Mycoremediation of Heavy Metals Contaminated Soil by Using Indigenous Metallotolerant Fungi. Polish J Chem Tech. 25(3), 1-13. 10.2478/pjct-2023-0019

Al-Farraj A.S., Al-Otabi T.G., and Al-Wabel, M.I. 2009. Accumulation coefficient and translocation factor of heavy metals through Ochradenus baccatus plant grown on mining area at Mahad AD’Dahab, Saudi Arabia. WIT Trans Ecol Environ. 122:459–468. 10.2495/ECO090421

Alharbi B.M., Abdulmajeed A.M., and Hassan H., 2021. Biochemical and molecular effects induced by triacontanol in acquired tolerance of rice to drought stress. Genes. 12(8):1119. 10.3390/genes12081119

Anjum S.A., Ashraf U., Khan I., Tanveer M., Shahid M., Shakoor A., and Wang L. 2017. Phyto-toxicity of chromium in maize: oxidative damage, osmolyte accumulation, anti-oxidative defense and chromium uptake. Pedosphere. 27(2):262–273. 10.1016/S1002-0160(17)60315-1

Arnon D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24(1):1. 10.1104/pp.24.1.1

Bates L.S., Waldren R.A., and Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39:205–207. 10.1007/BF00018060

Bulgari R., Franzoni G., and Ferrante A. 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy. 9(6):306. 10.3390/agronomy9060306

Chandra P., and Kulshreshtha K. 2004. Chromium accumulation and toxicity in aquatic vascular plants. Bot Rev. 70(3):313–327. 10.1663/0006-8101(2004)070[0313:CAATIA]2.0.CO;2

Chen K. 2011. Antioxidants and Dehydrin Metabolism Associated with Osmopriming Enhanced Stress Tolerance of Germinating Spinach (Spinacia oleracea L. cv. Bloomsdale) Seeds. Graduate Dissertations 10471, Iowa State University, Iowa.

Chen K., and Arora R. 2013. Priming memory invokes seed stress-tolerance. Environ Exp Bot. 94:33–45. 10.1016/j.envexpbot.2012.03.005

Chen I.N., Chang C.C., Ng C.C., Wang C.Y., Shyu Y.T., and Chang T.L. 2008. Antioxidant and antimicrobial activity of Zingiberaceae plants in Taiwan. Plant Foods Hum Nutr. 63:15–20. 10.1007/s11130-007-0063-7

Chen Z.C, Peng W.T., Li J., Liao H. 2018. Functional dissection and transport mechanism of magnesium in plants. Semin Cell Dev Biol. 74:142–152. 10.1016/j.semcdb.2017.08.005

Chen, X., Yuan, H., Chen, R., Zhu, L., Du, B., Weng, Q., and He, G. 2002. Isolation and characterization of triacontanol-regulated genes in rice (Oryza sativa L.): possible role of triacontanol as a plant growth stimulator. Plant and Cell Physiology, 43(8), 869–876.

Da Conceicao Gomes M.A., Hauser-Davis R.A., Suzuki M.S., and Vitoria A.P. 2017. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol Environ Saf. 140:55–64. 10.1016/j.ecoenv.2017.01.042

Dar, M.A., Kaushik, G., and Villarreal-Chiu, J.F. 2019. Pollution status and bioremediation of chlorpyrifos in environmental matrices by the application of bacterial communities: A review. Journal of environmental management, 239, 124–136.

Digruber T., Sass L., Cseri A., Paul K., Nagy A.V., Remenyik J., Molnar I., Vass I., Toldi O., Gyuricza C., and Dudits D. 2018. Stimulation of energy willow biomass with triacontanol and seaweed extract. Ind Crops Prod. 120:104–112. 10.1016/j.indcrop.2018.04.047

Fariduddin Q., Zaid A., and Mohammad F. 2019. Plant growth regulators and salt stress: mechanism of tolerance trade-off. Salt Stress Microbes Plant Interact Causes Sol. 1:91–111. 10.1007/978-981-13-8801-9_4

Gill S.S., and Tuteja N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 48(12):909–930. 10.1016/j.plaphy.2010.08.016

Gill R.A., Zhang N., Ali B., Farooq M.A., Xu J., Gill M.B., Moa B., and Zhou W. 2016. Role of exogenous salicylic acid in regulating physio-morphic and molecular changes under chromium toxicity in black-and yellow-seeded Brassica napus L. Environ Sci Pollut Res (ESPR). 23:20483–20496. 10.1007/s11356-016-7167-2

Gupta P., Kumar V., Usmani Z., Rani R., Chandra A., and Gupta V.K. 2019. A comparative evaluation towards the potential of Klebsiella sp., and Enterobacter sp. in plant growth promotion, oxidative stress tolerance and chromium uptake in Helianthus annuus (L.). J Hazard Mate. 377:391–398. 10.1016/j.jhazmat.2019.05.054

Gupta, S., and Seth, C. S. (2021). Salicylic acid alleviates chromium (VI) toxicity by restricting its uptake, improving photosynthesis and augmenting antioxidant defense in Solanum lycopersicum L. Physiology and Molecular Biology of Plants, 27, 2651–2664.

Hafeez A., Rasheed R., Ashraf M.A., Rizwan M., and Ali S. 2022. Effects of exogenous taurine on growth, photosynthesis, oxidative stress, antioxidant enzymes and nutrient accumulation by Trifolium alexandrinum plants under manganese stress. Chemosphere. 308:136523. 10.1016/j.chemosphere.2022.136523

Hayat S., Khalique G., Irfan M., Wani A.S., Tripathi B.N., Ahmad A. 2012. Physiological changes induced by chromium stress in plants: an overview. Protoplasma. 249:599–611. 10.1007/s00709-011-0331-0

Hussain A., Ali S., Rizwan M., Zia ur Rehman M., Hameed A., Hafeez F., Alamri S.A., Alyemeni M.N., and Wijaya L. 2018. Role of zinc–lysine on growth and chromium uptake in rice plants under Cr stress. J Plant Growth Regul. 37:1413–1422. 10.1007/s00344-018-9831-x

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization, & International Agency for Research on Cancer. (2004). Some drinking-water disinfectants and contaminants, including arsenic (Vol. 84). Iarc.

Islam S., Zaid A., and Mohammad F. 2021. Role of triacontanol in counteracting the ill effects of salinity in plants: a review. J Plant Growth Regul. 40:1–10. 10.1007/s00344-020-10064-w

Jaafar N.A., Ahmed A.S., and Al-Sandooq D.L. 2000. Detection of active compounds in Radish (Raphanus sativus L.) and their various biological effects. Plant Arch. 20:1647–1650.

Javed M.T., Tanwir K., Abbas S., Saleem M.H., Iqbal R., and Chaudhary H.J. 2021. Chromium retention potential of two contrasting Solanum lycopersicum Mill. cultivars as deciphered by altered pH dynamics, growth, and organic acid exudation under Cr stress. Environ Sci Pollut Res. 28:27542–27554. 10.1007/s11356-020-12269-8

Karam E.A., Keramat B., Asrar Z., and Mozafari H. 2017. Triacontanol-induced changes in growth, oxidative defense system in Coriander (Coriandrum sativum) under arsenic toxicity. Indian J Plant Physiol. 21:137–142. 10.1007/s40502-016-0213-8

Kaur G., and Bhatia S. 2021. Characterization of radish leaf protein concentrates for biochemical, functional properties, antioxidant activity, mineral content and microbial stability. Int J Agricul Sci. 17(2):185–193. 10.15740/HAS/IJAS/17.2/185-193

Keller T., and Schwager H. 1977. Air pollution and ascorbic acid. Eur J Forest Pathol. 7(6):338–350. 10.1111/j.1439-0329.1977.tb00603.x

Keramat B., Sorbo S., Maresca V., Asrar Z., Mozafari H., and Basile A. 2017. Interaction of triacontanol and arsenic on the ascorbate-glutathione cycle and their effects on the ultrastructure in Coriandrum sativum L. Environ Exp Bot. 141:161–169. 10.1016/j.envexpbot.2017.07.012

Krishnan R.R., and Kumari B.D. 2008. Effect of N-triacontanol on the growth of salt stressed soybean plants. J Biosci. 19(2):53–62.

Moseley, G., and Jones, J.R. 1984. The physical digestion of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) in the foregut of sheep. Br J Nutr. 52(2):381–390. 10.1079/BJN19840104

Muszyńska E., and Labudda M. 2019. Dual role of metallic trace elements in stress biology—from negative to beneficial impact on plants. Int J Mol Sci. 20(13):17–31. 10.3390/ijms20133117

Naveed, M., Khatoon, K., Aziz, T. Naveed R, Majeed MN, Maida SD, Javed T, Khan AA, A lasmari AF. (2025). Scrutinizing the evidence of anthracene toxicity on adrenergic receptor beta-2 and its bioremediation by fungal manganese peroxidase via in silico approaches. Sci Rep 15, 3795. 10.1038/s41598-025-85889-0

Naveed, M., Naveed, R., Aziz, T. Iqbal F, Hassan A, Saleem A, Waseem M, Rahman SR, Alharbi M, Alshammari A, Alasmari AF. (2024). Exploring the potential application of peroxidase enzyme from Acinetobacter baumannii as an eco-friendly agent for the bioremediation of the highly noxious pyrethroid compounds through molecular docking analysis. Biomass Conv. Bioref. 15, 155–173. 10.1007/s13399-023-05160-2

Naveed M, Shabbir MA, Aziz T, Saleem A, Naveed R, Khan AA, Ul Haq T, Alharbi M, Alshammari A, Alasmari AF. (2023). In silico explorations of bacterial mercuric reductase as an ecofriendly bioremediator for noxious mercuric intoxications. Acta Biochim Pol. 70(3):661-669. 10.18388/abp.2020_6838.

Nikolaou K.E., Chatzistathis T., Theocharis S., Argiriou A., Koundouras S., and Zioziou E. 2022. Effects of chromium toxicity on physiological performance and nutrient uptake in two grapevine cultivars (Vitis vinifera L.) growing on own roots or grafted onto different rootstocks. Horticulturae. 8(6):493. 10.3390/horticulturae8060493

Park C.H., Baskar T.B., Park S.Y., Kim S.J., Valan Arasu M., Al-Dhabi N.A., ..., and Park S.U. 2016. Metabolic profiling and antioxidant assay of metabolites from three radish cultivars (Raphanus sativus). Molecules. 21(2):157. 10.3390/molecules21020157

Pereira A.D.E.S., Oliveira H.C., and Fraceto L.F. 2019. Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study. Sci Rep. 9(1):1–10. 10.1038/s41598-019-43494-y

Perveen S., Shahbaz M., and Ashraf M. 2012. Is pre-sowing seed treatment with triacontanol effective in improving some physiological and biochemical attributes of wheat (Triticum aestivum L.) under salt stress? J App Bot Food Qual. 85(1):41.

Perveen S., Shahbaz M., and Ashraf M. 2014. Triacontanol-induced changes in growth, yield, leaf water relations, oxidative defence system, minerals, and some key osmoprotectants in Triticum aestivum under saline conditions. Turk J Bot. 38(5):896–913. 10.3906/bot-1401-19

Peterson G.L. 1977. Modified Lowry procedure for protein determination. Anal Biochem. 83:346–356. 10.1016/0003-2697(77)90043-4

Ries S. 1991. Triacontanol and its second messenger 9-β-L (+)-adenosine as plant growth substances. Plant Physiol. 95(4):986–989. 10.1104/pp.95.4.986

Rosa M., Prado C., Chocobar-Ponce S., Pagano E., and Prado F. 2017. Effect of seasonality and Cr (VI) on starch-sucrose partitioning and related enzymes in floating leaves of Salvinia minima. Plant Physiol Biochem. 118:1–10. 10.1016/j.plaphy.2017.05.014

Saad R.B., Hsouna A.B., Saibi W., Hamed K.B., Brini F., and Ghneim-Herrera T. 2018. A stress-associated protein, LmSAP, from the halophyte Lobularia maritima provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes. J Plant Physiol. 231:234–243. 10.1016/j.jplph.2018.09.019

Sagner S., Kneer R., Wanner G., Cosson J.P., Deus-Neumann B., and Zenk M.H. 1998. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry. 47(3):339–347. 10.1016/S0031-9422(97)00593-1

Sahreen S., Khan M.R., and Khan R.A. 2011. Phenolic compounds and antioxidant activities of Rumex hastatus D. Don. leaves. J Med Plants Res. 5(13):2755–2765.

Sardar R., Zulfiqar A., Ahmed S., Shah A.A., Iqbal R.K., Hussain S., ... & Datta R. 2022. Proteomic changes in various plant tissues associated with chromium stress in sunflower. Saudi J Bio Sci. 29(4):2604–2612. 10.1016/j.sjbs.2021.12.042

Shah, A., and Smith D.L. 2020. Flavonoids in agriculture: chemistry and roles in biotic and abiotic stress responses, and microbial associations. Agronomy. 10(8):1209. 10.3390/agronomy10081209

Shahid M., Shamshad S., Rafiq M., Khalid S., Bibi I., Niazi N.K., Durmat C., and Rashid M.I. 2017. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere. 178:513–533. 10.1016/j.chemosphere.2017.03.074

Shehata H.S., and Galal T.M. 2020. Trace metal concentration in planted cucumber (Cucumis sativus L.) from contaminated soils and its associated health risks. J Consum Prot Food Saf. 15:205–217. 10.1007/s00003-020-01284-z

Singh M., Khan M.M.A., Moinuddin and Naeem M. 2012. Augmentation of nutraceuticals, productivity and quality of ginger (Zingiber officinale Rosc.) through triacontanol application. Plant Biosyst Int J Dealing Aspects Plant Bio. 146(1):106–113. 10.1080/11263504.2011.575891

Soliman A.S., and Shanan N.T. 2017. The role of natural exogenous foliar applications in alleviating salinity stress in Lagerstroemia indica L. seedlings. J Appl Horticul. 19:35–45. 10.37855/jah.2017.v19i01.06

Umar, A., Sarkingobir, Y., Gobir, S. S., Aliyu, S., Tambari, U., and Hamza, A. 2023. Evaluation of some heavy metals contents in soil and tobacco grown in Sokoto, Nigeria. Kaunia: Integration and Interconnection Islam and Science Journal. 19(1), 9–14.

Vasylieva N. 2018. Ukrainian agricultural contribution to the world food security: economic problems and prospects. Montenegrin J Econ. 14(4):215–224. 10.14254/1800-5845/2018.14-4.15

Wakeel, A., Ali, I., Wu, M., Raza Khan, A., Jan, M., Ali, A., Liu, Y., Ge, S., Wu, J., Liu, B., et al. 2019. Ethylene mediates dichromate-induced oxidative stress and regulation of the enzymatic antioxidant system-related transcriptome in Arabidopsis thaliana. Environ Exp Bot. 161:166–179. 10.1016/j.envexpbot.2018.09.004

Xu J., Zhu Y., Ge Q., Li Y., Sun J., Zhang Y., and Liu X., 2012. Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress. New Phytol. 196 (1):125–138. 10.1111/j.1469-8137.2012.04236.x

Yadav, A., and Singh, S. 2023. Effect of exogenous phytohormone treatment on antioxidant activity, enzyme activity and phenolic content in wheat sprouts and identification of metabolites of control and treated samples by UHPLC-MS analysis. Food Research International. 169:112811.

Yan B., and Hou Y. 2018. Effect of soil magnesium on plants: a review. IOP Conf Ser Earth Environ Sci. 170:22168. 10.1088/1755-1315/170/2/022168

Zaheer I.E., Ali S., Saleem M.H., Noor I., El-Esawi M.A., Hayat K., Rizwan M., Abbas Z., EI-Sheikh M.A., Alyemeni M.N., and Wijaya L. 2020. Iron–lysine mediated alleviation of chromium toxicity in spinach (Spinacia oleracea L.) plants in relation to morpho-physiological traits and iron uptake when irrigated with tannery wastewater. Sustainability. 12(16):66–90. 10.3390/su12166690

Zaid A., Asgher M., Wani I.A., and Wani S.H., 2020. Role of triacontanol in overcoming environmental stresses. In Fahad S, Saud S, Chen Y, Wu C, Wang D (eds.), Protective Chemical Agents in the Amelioration of Plant Abiotic Stress Chap. 25, IntechOpen, pp. 491–509. 10.1002/9781119552154.ch25

Zameer M, Tahir U, Khalid S, Zahra N, Sarwar A, Aziz T, Saidal A, Alhomrani M, S Alamri A, Dablool AS, Sameeh MY, Mohamed AA, Alharbi A. (2023). Isolation and characterization of indigenous bacterial assemblage for biodegradation of persistent herbicides in the soil. Acta Biochim Pol. 70(2):325-334. 10.18388/abp.2020_6563

Zieslin N., and Ben-Zaken R. 1993. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol Biochem (Paris). 31(3):333–339.