Wound-healing potentiation in mice treated with phenolic extracts of Moringa oleifera leaves planted at different climatic areas

Main Article Content

Sara Benkiran
Abdellah Zinedine
Tariq Aziz
João Miguel Rocha
Iman Msegued Ayam
Sidi Mohammed Raoui
Rachida Chabir
Faouzi Errachidi
Metab Alharbi
Thamer H. Albekairi
Abdullah F Alasmari

Keywords

aqueous extract, ethanolic extract, mice, Moringa oleifera, phenolic compounds, wound-healing potentiation

Abstract

For years, Moringa oleifera has been known for possessing wound-healing properties. This study aimed to investigate the effect of two extracts: aqueous extract (AE) and ethanolic extract (EE) of Moringa oleifera leaves planted at two regions (Mssisi and Lamta) in Morocco for their anti-inflammatory and healing properties, for which mice were used as a biological model. Inflammation was monitored by assessing forepaw volume of mice, measured at 0 min, 1 h, 3 h, and 5 h, after its induction by carrageenan. Hind paw of mice were treated with extracts of M. oleifera, at a dose of 50 mg/kg, obtained from Mssisi region. This resulted in reduction of edema by 99.2% with EE and by 91.8% with AE, compared to controls and the phenolic extract of M. oleifera planted at Lamta region. Regarding healing of burns induced on rat’s dorsal region; results showed that application of Moringa-based ointment for 14 days, at a dose of 50 mg/kg on wounds, resulted in total healing, compared to controls (negative control: more than 22 days, and positive control: 22 days). M. oleifera extracts resulted in nearly complete tissue repair of 98.26% and 95.34% with EE and AE, respectively.

Abstract 146 | PDF Downloads 203 HTML Downloads 0 XML Downloads 78

References

Abd Rani, N.Z., Husain, K. and Kumolosasi, E. 2018. Moringa genus: a review of phytochemistry and pharmacology. Front Pharmacol. 9: 108. 10.3389/fphar.2018.00108

Abeje, B.A., Bekele, T., Getahun, K.A. and Asrie, A.B. 2022. Evaluation of wound healing activity of 80% hydromethanolic crude extract and solvent fractions of the leaves of urtica simensis in mice. J Exp Pharmacol. 14: 221–241. 10.2147/JEP.S363676

Adedapo, A.A., Falayi, O.O. and Oyagbemi, A.A. 2015. Evaluation of the analgesic, anti-inflammatory, anti-oxidant, phytochemical and toxicological properties of the methanolic leaf extract of commercially processed Moringa oleifera in some laboratory animals. J Basic Clin Physiol Pharmacol. 26: 491–499. 10.1515/jbcpp-2014-0105

Ahmad, E., Jahangeer, M., Mahmood Akhtar, Z., Aziz, T., Alharbi, M., Alshammari, A., et al. 2023a. Characterization and gastroprotective effects of Rosa brunonii Lindl. fruit on gastric mucosal injury in experimental rats–a preliminary study. Acta Biochim Polonica. 70: 633–641. 10.18388/abp.2020_6772

Ahmad, B., Muhammad Yousafzai, A., Maria, H., Khan, A.A., Aziz, T., Alharbi, M., et al. 2023b. Curative effects of dianthus orientalis against paracetamol triggered oxidative stress, hepatic and renal injuries in rabbit as an experimental model. Separations. 10: 182. 10.3390/separations10030182

Al-Ghanayem, A.A., Alhussaini, M.S., Asad, M. and Joseph, B. 2022. Moringa oleifera leaf extract promotes healing of infected wounds in diabetic rats: evidence of antimicrobial, antioxidant and proliferative properties. Pharmaceuticals. 15: 528. 10.3390/ph15050528

Alhakmani, F., Kumar, S. and Khan, S.A. 2013. Estimation of total phenolic content, in vitro antioxidant and anti-inflammatory activity of flowers of Moringa oleifera. Asian Pac J Trop Biomed. 3: 623–627. 10.1016/S2221-1691(13)60126-4

Ammara, A., Nureen, Z., Sohail, A., Abid, S., Aziz, T., Nahaa, M.A., et al. 2023. Revolutionizing the effect of Azadirachta indica extracts on edema induced changes in C-reactive protein and interleukin-6 in albino rats: in silico and in vivo approach. Eur Rev Med Pharmacol Sci. 27: 5951–5963. 10.26355/eurrev_202307_32947

Anzano, A., De Falco, B., Ammar, M., Ricciardelli, A., Grauso, L., Sabbah, M., et al. 2022. Chemical analysis and antimicrobial activity of Moringa oleifera Lam. leaves and seeds. Molecules. 27: 8920. 10.3390/molecules27248920

Autor, E., Cornejo, A., Bimbela, F., Maisterra, M., Gandía, L.M. and Martínez-Merino, V. 2022. Extraction of phenolic compounds from populus salicaceae bark. Biomolecules. 12: 539. 10.3390/biom12040539

Aziz, T., Ihsan, F., Ali Khan, A., Ur Rahman, S., Zamani, G.Y., Alharbi, M., et al. 2023. Assessing the pharmacological and biochemical effects of Salvia hispanica (Chia seed) against oxidized Helianthus annuus (sunflower) oil in selected animals. Acta Biochim Polonica. 70: 211–218. 10.18388/abp.2020_6621

Baa, K., Tine, E., Destain, J., Cissé, N. and Thonart, P. 2010. Étude comparative des composés phénoliques, du pouvoir antioxydant de différentes variétés de sorgho sénégalais et des enzymes amylolytiques de leur malt. Biotechnol Agron Soc Environ. 14: 131–139. https://popups.uliege.be/1780-4507/index.php?id=17093&file=1&pid=5032

Bayraktar, B., Tekce, E., Bayraktar, S., Böyük, G., Takma, Ç., Aksakal, V., et al. 2023. Investigation of endocrine response of thyroid and intestinal and adipose tissues due to the addition of Moringa oleifera essential oil in diet for quails exposed to heat stress. Revista Brasileira de Zootecnia. 52: e20210040. 10.37496/rbz5220210040

Ben Mahmoud, K., Wasli, H., Ben Mansour, R., Jemai, N., Selmi, S., Jemmali, A. et al. 2022. Antidiabetic, antioxidant and chemical functionalities of Ziziphus jujuba (Mill.) and Moringa oleifera (Lam.) plants using multivariate data treatment. South Afr J Bot. 144: 219–228. 10.1016/j.sajb.2021.08.017

Bouchama, C., Zinedine, A., Rocha, J.M., Chadli, N., El Ghadraoui, L., Chabir, R., et al. 2023. Effect of phenolic compounds extracted from turmeric (Curcuma longa L.) and ginger (Zingiber officinale) on cutaneous wound healing in wistar rats. Cosmetics. 10: 137. 10.3390/cosmetics10050137

Cai, E.Z., Ang, C.H., Raju, A., Tan, K.B., Hing, E.C.H., Loo, Y., et al. 2014. Creation of consistent burn wounds: a rat model. Arch Plast Sur. 41: 317–324. 10.5999/aps.2014.41.4.317

Chaudhary, P.H., Tawar, M.G., Jawkhede, V.M., Raut, P.K. and Ramteke, H.R. 2022. A pharmacognosy, ethanobotany and phyto-pharmacology of Moringa oleifera Lam. Int J Pharm Tech Res. l15: 73–82. https://www.sphinxsai.com/2022/ph_vol15_no2/1/(73-82)V15N2PT.pdf

Chelu, M., Musuc, A.M., Popa, M. and Calderon Moreno, J. 2023. Aloe vera-based hydrogels for wound healing: properties and therapeutic effects. Gels. 9: 539. 10.3390/gels9070539

Criollo-Mendoza, M.S., Contreras-Angulo, L.A., Leyva-López, N., Gutiérrez-Grijalva, E.P., Jiménez-Ortega, L.A. and Heredia, J.B. 2023. Wound healing properties of natural products: mechanisms of action. Molecules. 28: 598. 10.3390/molecules28020598

Dahmani, S., Chabir, R., Errachidi, F., Berrada, W., Lansari, H., Benidir, M., et al. 2020. Evaluation of in vivo wound healing activity of Moroccan citrus reticulata peel extract. Clin Phytosci. 6: 78. 10.1186/s40816-020-00222-8

Das, P.E., Abu-Yousef, I.A., Majdalawieh, A.F., Narasimhan, S. and Poltronieri, P. 2020. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities. Molecules. 25: 555. 10.3390/molecules25030555

Davidson, J.M. 1998. Animal models for wound repair. Arch Dermatol Res. 290: S1–S11. 10.1007/PL00007448

Du Toit, E.S., Sithole, J. and Vorster, J. 2020. Leaf harvesting severity affects total phenolic and tannin content of fresh and dry leaves of Moringa oleifera Lam. trees growing in Gauteng, South Africa. South Afr J Bot. 129: 336–340. 10.1016/j.sajb.2019.08.035

Ejaz, A., Jahangir, M., Bukhari, N.I., Sarwar, A., Aziz, T., Alharbi, M., et al. 2023. Isolation, structure elucidation & antidiabetic potential of rosa brunonii l. fruit–fight diabetes with natural remedies. J Chil Chem Soc. 68: 5887–5894. https://www.jcchems.com/index.php/JCCHEMS/article/view/2355

El Massoudi, S., Zinedine, A., Rocha, J.M., Benidir, M., Najjari, I., El Ghadraoui, et al. 2023. Phenolic composition and wound healing potential assessment of Moroccan henna (Lawsonia inermis) aqueous extracts. Cosmetics. 10: 92. 10.3390/cosmetics10030092

Emberger, L. 1942. Un projet de classification des climats du point de vue phytogéographique. Bull Sociét Hist Nat Toulouse. 77: 97–124.

Emrich, S., Schuster, A., Schnabel, T. and Oostingh, G.J. 2022. Antimicrobial activity and wound-healing capacity of birch, beech and larch bark extracts. Molecules. 27: 2817. 10.3390/molecules27092817

Ettayebi, K., Errachidi, F., Jamai, L., Tahri-Jouti, M.A., Sendide, K. and Ettayebi, M. 2003. Biodegradation of polyphenols with immobilized Candida tropicalis under metabolic induction. FEMS Microbiol. Lett. 223: 215–219. 10.1016/S0378-1097(03)00380-X

Fitriani, N., Wilar, G., Narsa, A.C., Mohammed, A.F.A. and Wathoni, N. 2023. Application of amniotic membrane in skin regeneration. Pharmaceutics. 15: 748. 10.3390/pharmaceutics15030748

Gayathri, S., Bhakat, M. and Mohanty, T. 2023. Assessment of antibacterial efficacy of Moringa oleifera extracts–a comparative study on mastitic and nonmastitic cultures. Pharma Innov J. 12: 3733–3742. https://www.thepharmajournal.com/archives/2023/vol12issue7/PartAQ/12-7-616-202.pdf

Getie, M., Gebre-Mariam, T., Rietz, R. and Neubert, R.H.H. 2002. Evaluation of the release profiles of flavonoids from topical formulations of the crude extract of the leaves of Dodonea viscosa (Sapindaceae). Pharmazie. 57: 320–322. https://pubmed.ncbi.nlm.nih.gov/12061256

Hamad, R.S. 2023. Chlorogenic acid derived from Moringa oleifera leaf as a potential anti-inflammatory agent against cryptosporidiosis in mice. Trop Biomed. 40: 45–54. 10.47665/tb.40.1.010

Hayat, P., Khan, I., Rehman, A., Jamil, T., Hayat, A., Rehman, M.U., et al. 2023. Myogenesis and analysis of antimicrobial potential of silver nanoparticles (AgNPs) against pathogenic bacteria. Molecules. 28: 637. 10.3390/molecules28020637

Hussain, Z., Jahangeer, M., Rahman, S.U., Ihsan, T., Sarwar, A., Ullah, N., et al. 2023a. Synthesis of silver nanoparticles by aqueous extract of Zingiber officinale and their antibacterial activities against selected species. Pol J Chem Technol. 25: 23–30. 10.2478/pjct-2023-0021

Hussain, Z., Jahangeer, M., Sarwar, A., Ullah, N., Tariq, A., Alharbi, M., et al. 2023b. Synthesis and characterization of silver nanoparticles mediated by the mentha piperita leaves extract and exploration of its antimicrobial activities. J Chil Chem Soc. 68: 5865–5870. https://www.jcchems.com/index.php/JCCHEMS/article/view/2313

Islam, Z., Islam, S.M.R., Hossen, F., Mahtab-ul-Islam, K., Hasan, Md. R. and Karim, R. 2021. Moringa oleifera is a prominent source of nutrients with potential health benefits. Int J Food Sci. 2021: 6627265. 10.1155/2021/6627265

Khurshaid, I., Ilyas, S., Zahra, N., Ahmad, S., Aziz, T., Al-Asmari, F., et al. 2023. Isolation, preparation and investigation of leaf extracts of Aloe barbadensis for its remedial effects on tumor necrosis factor alpha (TNF-α) and interleukin (IL-6) by in vivo and in silico approaches in experimental rats. Acta Biochimica Polonica. 70(4): 927–933. 10.18388/abp.2020_6827

Kouamo, J., Manie, S.B. and Kana, A.G.D. 2022. Typology and management of wounds in dogs and cats in veterinary clinics in the city of Yaoundé, Cameroon. Revue Vétérinaire Clinique. 57: 149–165. 10.1016/j.anicom.2022.06.002

Krawczyk, M., Burzynska-Pedziwiatr, I., Wozniak, L.A. and Bukowiecka-Matusiak, M. 2022. Evidence from a systematic review and meta-analysis pointing to the antidiabetic effect of polyphenol-rich plant extracts from Gymnema montanum, Momordica charantia and Moringa oleifera. Curr Issues Mol Biol. 44: 699–717. 10.3390/cimb44020049

Kumar, M.A. and Karthik, K.P. 2023. Jyotsnikā: the quintessence of Kerala’s ayurvedic toxicology. J Ayurv Integr Med. 14: 100741. 10.1016/j.jaim.2023.100741

Mathew-Steiner, S.S., Roy, S. and Sen, C.K. 2021. Collagen in wound healing. Bioengineering. 8: 63. 10.3390/bioengineering8050063

Meireles, D., Gomes, J., Lopes, L., Hinzmann, M. and Machado, J. 2020. A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: integrative approach on conventional and traditional Asian medicine. Adv Trad Med. 20: 495–515. 10.1007/s13596-020-00468-0

Minakshi, G.C., Velu, K., Priya, T., Kumar, R.M., Kaliappan, I. and Dubey, G.P. 2022. Anti-adipogenic β-sitosterol and lupeol from Moringa oleifera suppress adipocyte differentiation through regulation of cell cycle progression. J Food Biochem. 46: e14170. 10.1111/jfbc.14170

Mokhtari, N., Mrabet, R., Lebailly, P. and Bock, L. 2014. Spatialisation des bioclimats, de l’aridité et des étages de végétation du Maroc. Revue Marocaine des Sciences Agronomiques et Vétérinaires. 2: 50–66. https://www.agrimaroc.org/index.php/Actes_IAVH2/article/view/334

Mssillou, I., Bakour, M., Slighoua, M., Laaroussi, H., Saghrouchni, H., Ez-Zahra Amrati, F., et al. 2022. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: a review. J Ethnopharmacol. 298: 115663. 10.1016/j.jep.2022.115663

Muzammil, S., Neves Cruz, J., Mumtaz, R., Rasul, I., Hayat, S., Khan, M.A., et al. 2023. Effects of drying temperature and solvents on in vitro diabetic wound healing potential of Moringa oleifera leaf extracts. Molecules. 28: 710. 10.3390/molecules28020710

Naveed, M., Batool, H., Rehman, S.U., Javed, A., Makhdoom, S.I., Aziz, T., et al. 2022a. Characterization and evaluation of the antioxidant, antidiabetic, anti-inflammatory, and cytotoxic activities of silver nanoparticles synthesized using Brachychiton populneus leaf extract. Processes. 10: 1521. 10.3390/pr10081521

Naveed, M., Bukhari, B., Aziz, T., Zaib, S., Mansoor, M.A., Khan, A.A., et al. 2022b. Green synthesis of silver nanoparticles using the plant extract of Acer oblongifolium and study of its antibacterial and antiproliferative activity via mathematical approaches. Molecules. 27: 4226. 10.3390/molecules27134226

Naveed, M., Makhdoom, S.I., Rehman, S.U., Aziz, T., Bashir, F., Ali, U., et al. 2023. Biosynthesis and mathematical interpretation of zero-valent iron NPs using Nigella sativa seed tincture for indemnification of carcinogenic metals present in industrial effluents. Molecules. 28: 3299. 10.3390/molecules28083299

Nikolova, N. and Yanakiev, D. 2020. Climate aridity in southern Bulgaria for the period 1961–2015. Forum Geogr. XIX: 10–17. 10.5775/fg.2020.010.i

Oldoni, T.L.C., Dos Santos, S., Mitterer-Daltoé, M.L., Pizone, L.H.I. and Lima, V.A.D. 2022. Moringa oleifera leaves from Brazil: influence of seasonality, regrowth age and, region in biochemical markers and antioxidant potential. Arab J Chem. 15: 104206. 10.1016/j.arabjc.2022.104206

Rahman, M Mashiar Sheikh, M.M.I., Sharmin, S.A., Islam, M.S., Rahman, M.A., Rahman, M Mizanur, et al. 2009. Antibacterial activity of leaf juice and extracts of Moringa oleifera Lam against some human pathogenic bacteria. CMU J Nat Sci. 8: 219.

Rais, C., Slimani, C., Benidir, M., Elhanafi, L., Zeouk, I., Errachidi, F., et al. 2020. Seeds of Zizyphus lotus: in vivo healing properties of the vegetable oil. Sci World J. 2020: 1–8. 10.1155/2020/1724543

Rathore, J., Thakur, K. and Rathore, V. 2023. Analytical study of Moringa oleifera flower’s extract: UV spectrophotometer & high performance liquid chromatography. J New Zealand Herpetol. 12: 92–100. http://www.biogecko.co.nz/admin/uploads/jyoti%20rathore%20RP%20(1).pdf

Rauf, B., Alyasi, S., Zahra, N., Ahmad, S., Sarwar, A., Aziz, T., et al. 2023. Evaluating the influence of Aloe barbadensis extracts on edema induced changes in C-reactive protein and interleukin-6 in albino rats through in vivo and in silico approaches. Acta Biochimica Polonica. 70: 425–433. 10.18388/abp.2020_6705

Riasat, A., Jahangeer, M., Sarwar, A., Saleem, Y., Shahzad, K., Rahman, S.U., et al. 2023. Scrutinizing the therapeutic response of Phyllanthus exmblica’s different doses to restore the immunomodulation potential in immunosuppressed female albino rats. Eur Rev Med Pharmacol Sci. 27: 9854–9865. 10.26355/eurrev_202310_34162.

Rocchetti, G., Pagnossa, J.P., Blasi, F., Cossignani, L., Hilsdorf Piccoli, R., Zengin, G., et al. 2020. Phenolic profiling and in vitro bioactivity of Moringa oleifera leaves as affected by different extraction solvents. Food Res Int. 127: 108712. 10.1016/j.foodres.2019.108712

Rode, S.B., Dadmal, A. and Salankar, H.V. 2022. Nature’s gold (Moringa oleifera): miracle properties. Cureus. 14: e26640. 10.7759/cureus.26640

Saki, M., De Villiers, H., Ntsapi, C. and Tiloke, C. 2023. The hepatoprotective effects of Moringa oleifera against antiretroviral-induced cytotoxicity in HepG2 cells: a review. Plants. 12: 3235. 10.3390/plants12183235

Saleem, A., Afzal, M., Naveed, M., Makhdoom, S.I., Mazhar, M., Aziz, T., et al. 2022. HPLC, FTIR and GC-MS analyses of thymus vulgaris phytochemicals executing in vitro and in vivo biological activities and effects on COX-1, COX-2 and gastric cancer genes computationally. Molecules. 27: 8512. 10.3390/molecules27238512

Samarasinghe, W.M.P., Jayawardena, K.H., Ranasinghe, C., Somaratne, S. and Gunaherath, G.M.K.B. 2023. In vitro wound healing potential of Ziziphus oenoplia (L.) Miller. J Nat Sci Found. Sri Lanka. 51: 327–340. 10.4038/jnsfsr.v51i2.11232

Sana, Ur Rahman, S., Zahid, M., Khan, A.A., Aziz, T., Iqbal, Z., Ali, W., et al. 2022. Hepatoprotective effects of walnut oil and Caralluma tuberculata against paracetamol in experimentally induced liver toxicity in mice. Acta Biochimica Polonica. 69: 871–878. 10.18388/abp.2020_6387

Saravanan, P., Pooja R., Balachander, N., Kesav Ram Singh, K., Silpa, S. and Rupachandra, S. 2023. Anti-inflammatory and wound-healing properties of lactic acid bacteria and its peptides. Folia Microbiolog. 68: 337–353. 10.1007/s12223-022-01030-y

Sauvage, C. 1963. Le quotient pluviothermique d’Emberger, son utilisation et la représentation géographique de ses variations au Maroc. Annales du Service de Physique du Globe et de Météorologie de l›Institut Scientifique Chérifien. 20: 11–23.

Shabbir, M.A., Naveed, M., Rehman, S.U., Ain, N.U., Aziz, T., Alharbi, M., et al. 2023. Synthesis of iron oxide nanoparticles from Madhuca indica plant extract and assessment of their cytotoxic, antioxidant, anti-inflammatory, and anti-diabetic properties via different nanoinformatics approaches. ACS Omega. 8: 33358–33366. 10.1021/acsomega.3c02744

Shah, S.W.A., Siddique Afridi, M., Ur-Rehman, M., Hayat, A., Sarwar, A., Aziz, T., et al. 2023. In vitro evaluation of phytochemicals, heavy metals and antimicrobial activities of leaf, stem and roots extracts of caltha palustris var. alba. J Chil Chem Soc. 68: 5807–5812. 10.4067/S0717-97072023000105807

Siddhuraju, P. and Becker, K. 2003. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J Agr Food Chem. 51: 2144–2155. 10.1021/jf020444+

Silva, D.C.G. da, Silva, H.M. da, Franco, P.P., Carmo, T.J.A.V. do, Santos, D.R. dos, Silveira, E.L., et al. 2023. Anacardium occidentale L. (cajueiro) in the healing of skin wounds: an experimental study in rats. Acta Cirúrgica Bras. 37: e371006.

Silva Nunes, J.P. and Martins Dias, A.A. 2017. Image J macros for the user-friendly analysis of soft-agar and wound-healing assays. Biotechniques. 62: 175–179. 10.2144/000114535

Singh, A.K., Rana, H.K., Tshabalala, T., Kumar, R., Gupta, A., Ndhlala, A.R., et al. 2020. Phytochemical, nutraceutical and pharmacological attributes of a functional crop Moringa oleifera Lam: an overview. South Afr J Bot. 129: 209–220. 10.1016/j.sajb.2019.06.017

Singleton, V.L. and Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic (AJEV). 16: 144–158. 10.5344/ajev.1965.16.3.144

Stewart, P. 1969. Rainfall quotient and biospheric degradation. Bull. Société Hist. Nat. Afr. Nord. 59: 23–36.

Su, X., Lu, G., Ye, L., Shi, R., Zhu, M., Yu, X., et al. 2023. Moringa oleifera Lam.: a comprehensive review on active components, health benefits and application. RSC Adv. 13: 24353–24384. 10.1039/D3RA03584K

Teixeira, E.M.B., Carvalho, M.R.B., Neves, V.A., Silva, M.A. and Arantes-Pereira, L. 2014. Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. leaves. Food Chem. 147: 51–54. 10.1016/j.foodchem.2013.09.135

Van Den Berg, J. and Kuipers, S. 2022. The antibacterial action of Moringa oleifera: a systematic review. South Afr J Bot. 151: 224–233. 10.1016/j.sajb.2022.09.034

Viaña-Mendieta, P., Sánchez, M.L. and Benavides, J. 2022. Rational selection of bioactive principles for wound healing applications: growth factors and antioxidants. Int Wound J. 19: 100–113. 10.1111/iwj.13602

Waseem, M., Naveed, M., Rehman, S.U., Makhdoom, S.I., Aziz, T., Alharbi, M., et al. 2023. Molecular characterization of spa, hld, fmhA, and l ukD genes and computational modeling the multidrug resistance of Staphylococcus species through Callindra harrisii silver nanoparticles. ACS Omega. 8: 20920–20936. 10.1021/acsomega.3c01597

Winter, C.A., Risley, E.A. and Nuss, G.W. 1962. Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med. 111: 544–547. 10.3181/00379727-111-27849

Wu, Y., Yang, X., Hu, Y., Hu, X., Zhang, Y., An, T., et al. 2023. Moringa oleifera leaf supplementation relieves oxidative stress and regulates intestinal flora to ameliorate polycystic ovary syndrome in letrozole-induced rats. Food Sci Nutr. 11: 5137–5156. 10.1002/fsn3.3473

Yang, M., Tao, L., Kang, X.-R., Wang, Z.-L., Su, L.-Y., Li, L.-F., et al. 2023. Moringa oleifera Lam. leaves as new raw food material: a review of its nutritional composition, functional properties, and comprehensive application. Trends Food Sci Technol. 138: 399–416. 10.1016/j.tifs.2023.05.013

Yazarlu, O., Iranshahi, M., Kashani, H.R.K., Reshadat, S., Habtemariam, S., Iranshahy, M., et al. 2021. Perspective on the application of medicinal plants and natural products in wound healing: a mechanistic review. Pharmacol Res. 174: 105841. 10.1016/j.phrs.2021.105841

Zahid, H., Shahab, M., Ur Rahman, S., Iqbal, Z., Khan, A.A., Aziz, T., et al. 2022. Assessing the effect of walnut (Juglans regia) and olive (Olea europaea) oil against the bacterial strains found in gut microbiome. Prog Nutr. 24: e2022122. 10.23751/pn.v24i3.13311

Zhishen, J., Mengcheng, T. and Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555–559. 10.1016/S0308-8146(98)00102-2

Zubair, M. 2020. Antimicrobial and anti-biofilm activities of Citrus sinensis and Moringa oleifera against the pathogenic Pseudomonas aeruginosa and Staphylococcus aureus. Cureus. 12: e12337. 10.7759/cureus.12337