Use of malted pulses to formulate gluten-free fresh-egg pasta

Main Article Content

Alessio Cimini
Alessandro Poliziani
Lorenzo Morgante
Mauro Moresi


dehulled malted pulse flour, fresh egg pasta, Gradoli Purgatory beans, in vitro glycemic index, Onano lentils, Solco Dritto chickpeas, texture profile analysis


In spite of the fact that legumes are rich in proteins, dietary fibers, and micronutrients, their average per capita consumption is limited because of their lengthy cooking period, unpleasant flavor, low-digestible proteins, and gastrointestinal problems. This study was aimed at assessing the effectiveness of the malting process of three typical pulse seeds of the Italian Latium region (i.e. Gradoli Purgatory beans [GPB]; Onano lentils [OL]; and Solco Dritto chickpeas [SDC]) to minimize their anti-nutrient content and test their use as ingredient in the preparation of gluten-free fresh egg pastas. All these fresh egg pastas were devoid of flatulence-inducing oligosaccharides with low phytate content (0.6–0.80 g/100 g of dry matter, dm), a crude protein content of around 20 g/100 g dm and in vitro glycemic index ranging from 28% to 38%. However, the only fresh egg pasta, including malted GPB flour, exhibited not only a significantly smaller glycemic index (28%±3%) but also a resistant starch–total starch ratio by far greater than the threshold value (14%) specified by the European Commission Regulation 432/2012 to label foods with the health claim indicating improvement in postprandial glucose metabolism.

Abstract 95 | PDF Downloads 104 HTML Downloads 0 XML Downloads 32


Abu-Ghannam N. and Gowen A. 2021. Pulse-based food products. In: Tiwari B.K., Gowen A. and McKenna B. (eds.) Pulse Foods. Processing, Quality and Nutraceutical Applications, 2nd edition. Academic Press, London, Chap. 15; pp. 369–391. 10.1016/B978-0-12-818184-3.00015-5

American Association of Cereal Chemists (AACC). 2009. AACC International Method 66-50.01, Pasta and noodle cooking quality – firmness. In Approved Methods of Analysis, 11th edition. AACC: St. Paul, MN.

Association of Official Analytical Chemists (AOAC). 1998. Crude Protein in Cereal Grains and Oilseeds. Generic Combustion Method. AOAC Method 992.23-1992. Association of Official Analytical Chemists, Gaithersburg, MD.

Atkinson F.S., Brand-Miller J.C., Foster-Powell K., Buyken A.E. and Goletzke J. 2021. International tables of glycemic index and glycemic load values 2021: a systematic review. Am J Clin. Nutr. 114: 1625–1632. 10.1093/ajcn/nqab233

Basso Los F.G., Ferreira Zielinski A.A., Wojeicchowski J.P., Nogueira A. and Mottin Demiate I. 2018. Beans (Phaseolus vulgaris L.): whole seeds with complex chemical composition. Curr Opin Food Sci. 19: 63–71. 10.1016/j.cofs.2018.01.010

Bourne M.C. 2002. Food Texture and Viscosity: Concept and Measurement, 2nd edition. Academic Press, San Diego, CA, pp. 182–186.

Bozkır E., Santamarina C., Mariotti M. and Saia S. 2023. Resistant starch in common beans: concentration, characteristics, uses and health effects. A systematic map and review of the studies from 1962 to 2023. Int J Food Sci Technol. 58: 4088–4099. 10.1111/ijfs.16522

Brand-Miller J., Hayne S., Petocz P. and Colagiuri S.M.D. 2003. Low-glycemic index diets in the management of diabetes: a meta-analysis of randomized controlled trials. Diabetes Care. 26(8): 2261–2267. 10.2337/diacare.26.8.2261

Cappa C., Kelly J.D. and Ng P. K.W. 2018. Seed characteristics and physicochemical properties of powders of 25 edible dry bean varieties. Food Chem., 253(1): 305-313. 10.1016/j.foodchem.2018.01.048

Cimini A., Cibelli M. and Moresi M. 2019b. Reducing the cooking water-to-dried pasta ratio and environmental impact of pasta cooking. J Sci Food Agric. 99: 1258–1266. 10.1002/jsfa.9299

Cimini A., Cibelli M. and Moresi M. 2020. Development and assessment of a home eco-sustainable pasta cooker. Food Bioprod Proc. 122: 291–302. 10.1016/j.fbp.2020.05.009

Cimini A., Cibelli M., Messia M.C., Marconi E. and Moresi M. 2019a. Cooking quality of commercial spaghetti: Effect of the water-to-dried pasta ratio. Eur. Food Res. Technol., 245(5): 1037–1045. 10.1007/s00217-018-3205-2

Cimini A., Poliziani A. and Moresi M. 2021. Effect of temperature on the hydration kinetics of chickpea (Cicer arietinum L.) and yellow soybean (Glycine max). Chem Engin Trans. 87: 31–36.

Cimini A., Poliziani A., Antonelli G., Sestili F., Lafiandra D. and Moresi M. 2022. Characterization of fresh pasta made of common and high-amylose wheat flour mixtures. Foods. 11(16): 2510. 10.3390/foods11162510.

Cimini A., Poliziani A., Morgante L. and Moresi M. 2023a. Assessment of the malting process of Purgatory bean and Solco Dritto chickpea seeds. Foods. 12: 3187. 10.3390/foods12173187

Cimini A., Poliziani A., Morgante L. and Moresi M. 2023b. Cooking and nutritional characteristics of malted chickpeas. Chem Eng Trans. 102: 343–348.

Cimini A., Poliziani A., Morgante L. and Moresi M. 2024. Antinutrient removal in yellow lentils by malting. J Sci Food Agricult. 104: 508–517. 10.1002/jsfa.12950

Confimi Industria. 2018. La produzione di legumi in Italia riprende a crescere, Available at: (accessed 11 October 2023).

Das G., Sharma A. and Sarkar P.K. 2022. Conventional and emerging processing techniques for the post-harvest reduction of antinutrients in edible legumes. Appl Food Res. 2(1): 100112. 10.1016/j.afres.2022.100112

de Almeida Costa G.E., Da Silva Queiroz-Monici K., Pissini Machado Reis S.M. and De Oliveira A.C. 2006. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 94(3): 327–330. 10.1016/j.foodchem.2004.11.020

de Barros M. and Prudencio S.H. 2016. Physical and chemical characteristics of common bean varieties. Ciências Agrárias Londrina. 37(2): 751–762. 10.5433/1679-0359.2016v37n2p751

Di Giovannantonio C., Catta M., Pica G. and Casadei G. 2019. Lenticchia di Onano. In: Lazio Patrimonio Agroalimentare tra Biodiversità e Tradizione. Arsial, Rome, Italy, pp. 213, 230, 245.

Di Pede G., Dodi R., Scarpa C., Brighenti F., Dall ’Asta M. and Scazzina F. 2021. Glycemic index values of pasta products: an overview. Foods. 10(11): 2541. 10.3390/foods10112541

Environmental Product Declarations (EPD) 2022. Uncooked pasta, not stuffed or otherwise prepared. Product category classification: UN CPC 2371, PCR 2010:01, vers. 4.0.2. Available at: (accessed 11 October 2023).

European Commission Regulation. 2012. Commission Regulation (EU) No. 432/2012 of 16 May 2012 establishing a list of permitted health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off J EU (OJEU). 136(May 25): 1–40. Available at: (accessed 10 October 2023).

European Commission Regulation. 2022. Commission Implementing Regulation (EU) No. 2022/897 of 2 June 2022 entering a name in the register of protected designations of origin and protected geographical indications (‘Lenticchia di Onano’, PGI). Off J EU(OJEU). 156(June 9): 2. Available at: (accessed 10 October 2023).

Food and Agriculture Organization (FAO) (2009) Agribusiness Handbook. Barley, Malt, Beer. Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 17–25. Available at: (accessed 8 October 2023).

Foster-Powell K., Holt S.H.A. and Brand-Miller J.C. 2002. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutrit. 76: 5–56. 10.1093/ajcn/76.1.5

Frias J., Vidal-Valverde C., Sotomayor C., Diaz-Pollan C. and Urbano G. 2000. Influence of processing on available carbohydrate content and antinutritional factors of chickpeas. Eur Food Res. Technol. 210: 340–345. 10.1007/s002170050560

Fujiwara N., Hall C. and Jenkins A.L. 2017. Development of low glycemic index (GI) foods by incorporating pulse ingredients into cereal-based products: use of in vitro screening and in vivo methodologies. Cereal Chem J. 94: 110–116. 10.1094/CCHEM-04-16-0119-FI

Gebrelibanos M., Tesfaye D., Raghavendra Y. and Sintayeyu B. 2013. Nutritional and health implications of legumes. Int J Pharm Sci. Res. 4(4): 1269–1279.

Giuberti G., Gallo A., Cerioli C., Fortunati P. and Masoero F. 2015. Cooking quality and starch digestibility of gluten free pasta using new bean flour. Food Chem. 175: 43–49. 10.1016/j.foodchem.2014.11.127

Granfeldt Y., Björck I., Drews A. and Towar J. 1992. An in vitro procedure based on chewing to predict metabolic responses to starch in cereal and legume products. Eur J Clin Nutrit. 46: 649–660.

International Organization for Standardization (ISO). 2016. International Standard ISO N. 7304-1, 2016. Durum wheat semolina and alimentary pasta. Estimation of Cooking Quality of Alimentary Pasta by Sensory Analysis-Part 1: Reference Method. International Organization for Standardization, Vernier, Geneva, CH.

Johnson C.R., Thavarajah D. and Thavarajah P. 2013. The influence of phenolic and phytic acid food matrix factors on iron bioavailability potential in 10 commercial lentil genotypes (Lens culinaris L.). J Food Comp Anal. 31: 82–86. 10.1016/j.jfca.2013.04.003

Lal M.K., Singh B., Sharma S., Singh M.P. and Kumar A. 2021. Glycemic index of starchy crops and factors affecting its digestibility: a review. Trends Food Sci Tech. 111: 741–755. 10.1016/j.tifs.2021.02.067

Maphosa Y. and Jideani V.A. 2017. The role of legumes in human nutrition. In: Chávarri Hueda M. (Ed.) Functional Food – Improve Health through Adequate Food. Intech Open, London, Chap. 6; pp. 103–121.

Nemecek T., von Richthofen J.-S., Dubois G., Casta P., Charles R. and Pahl H. 2008. Environmental impacts of introducing grain legumes into European crop rotations. Eur J Agron. 28: 380–393. 10.1016/j.eja.2007.11.004

Pasqualone A., Gambacorta G., Summo C., Caponio F., Di Miceli G., Flagella Z., Marrese P.P., Piro G., Perrotta C., De Bellis L. and Lenucci M.S. 2016. Functional, textural and sensory properties of dry pasta supplemented with lyophilized tomato matrix or with durum wheat bran extracts produced by supercritical carbon dioxide or ultrasound. Food Chem. 213: 545–553. 10.1016/j.foodchem.2016.07.006

Rawal V. and Navarro D.K. 2019. The Global Economy of Pulses. FAO, Rome, Italy.

Rawal V., Bansal P. and Tyagi K. 2019. Chickpea: transformation in production conditions. In: Rawal, V., Navarro, D.K. (Eds.), The Global Economy of Pulses. FAO, Rome, Italy, Chap. 3; pp. 21–36.

Shahbandeh M. 2023. Production volume of pulses worldwide from 2010 to 2021. Statista. Available at: (accessed 11 October 2023).

Sharma N., Sahu J.K., Joshi S., Khubber S., Bansal V., Bhardwaj A., Bangar S.P. and Bal L.M. 2022. Modulation of lentil anti-nutritional properties using non-thermal mediated processing techniques–a review. J Food Comp Anal. 109: 104498. 10.1016/j.jfca.2022.104498

Singh M., Manickavasagan A., Shobana S. and Mohan V. 2021. Glycemic index of pulses and pulse-based products: a review. Crit Rev Food Sci Nutr. 61(9): 1567–1588. 10.1080/10408398.2020.1762162

Slow Food Foundation. n.d.a Purgatory beans. Available at: (accessed 11 October 2023).

Slow Food Foundation. n.d.b Solco Dritto chickpea. Available at: (accessed 11 October 2023).

Sparvoli F., Bollini R. and Cominelli E. 2015. Nutritional value. In: Ron A.M.D. (Ed.) Grain Legumes. Springer, New Work, NY, pp. 291–326. 10.1007/978-1-4939-2797-5_10

Turco I., Bacchetti T., Morresi C., Padalino L. and Ferretti G. 2019. Polyphenols and the glycaemic index of legume pasta. Food Funct. 10: 5931–5938. 10.1039/C9FO00696F

Xu M., Jin Z., Simsek S., Hall C., Rao J. and Chen B. 2019. Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food Chem. 295: 579–587. 10.1016/j.foodchem.2019.05.167

Zou W., Sissons M., Gidley M.J., Gilbert R.G. and Warren F.J. 2015. Combined techniques for characterising pasta structure reveals how the gluten network slows enzymic digestion rate. Food Chem. 188: 559–568. 10.1016/j.foodchem.2015.05.032