Effect of traditional household processing techniques on phenolic compounds, antioxidants activity and γ-aminobutyric acid of cowpea (Vigna unguiculata) pods

Main Article Content

Fatima Ali AlGhamdi
Amro B. Hassan
Nora Abdullah AlFaris
Jozaa Zaidan AlTamimi


antioxidant activity, cowpea, GABA, phytochemical, traditional processing


The influence of common home processing methods was investigated on the color characteristics, phenolic component, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl [DPPH] and ferric-reducing antioxidant power [FRAP] activity) and the levels of γ-aminobutyric acid (GABA) in cowpea pods. The processing methods significantly increased the total phenolic content, total flavonoid content and the activity of antioxidant compounds (DPPH and FRAP). The GABA content sharply decreased in pods after boiling and drying treatment. However, it significantly increased after fermentation. The fermented cowpea pods displayed the highest content of phenolics, flavonoids, GABA and anthocyanin as well as antioxidant activity. Hence, these traditional domestic preparation methods could be recommended for the food industry.

Abstract 48 | PDF Downloads 71 HTML Downloads 23 XML Downloads 22


Adetuyi F.O. and Ibrahim T.A. 2014. Effect of fermentation time on the phenolic, flavonoid and vitamin C contents and antioxidant activities of okra (Abelmoschus esculentus) seeds. Nigerian Food J (NIFOJ). 32:128–137. 10.1016/S0189-7241(15)30128-4

Affrifah N.S., Phillips R.D. and Saalia F.K. 2022. Cowpeas: nutritional profile, processing methods and products—a review. Legume Sci. 4(3):e131. 10.1002/leg3.131

Awika J.M. and Duodu K.G. 2017. Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: a review. J Funct Foods. 38:686–697. 10.1016/j.jff.2016.12.002

Barros N.V.A, Rocha M.D.M., Glória M.B.A., Araújo M.A.M. and Moreira-Araújo R.S. 2017. Effect of cooking on the bioactive compounds and antioxidant activity in grains cowpea cultivars. Ciência Agronômica. 48:824–831. 10.5935/1806-6690.20170097

Benzie I. and Devaki M. 2017. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: concepts, procedures, limitations and applications: recent trends and applications. In: Apak, R. Capanoglu, E., and Shahidi, F. (eds.) Measurement of antioxidant activity and capacity: recent trends and applications. pp. 77–106. 10.1002/9781119135388.ch5

Brink M. and Belay G. (Eds.). 2006. Plant resources of Tropical Africa 1. cereals and pulses. PROTA Foundation, Wageningen, the Netherlands/Backhuys, Leiden, the Netherlands.

Chang S.T., Wu J.H., Wang S.Y., Kang P.L., Yang N.S. and Shyur L.F. 2001. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem. 49:3420–3424. 10.1021/jf0100907

Deng G., Lin X., Xu X., Gao L., Xie J. and Li H. 2013. Antioxidant capacities and total phenolic contents of 56 vegetables. J Func Foods. 5:260–266. 10.1016/j.jff.2012.10.015

Egbuna C., Ifemeje J.C., Maduako M.C., Tijjani H., Udedi S.C., Nwaka A.C., et al. 2018. Phytochemical test methods: qualitative, quantitative and proximate analysis. In: Egbuna C., Ifemeje J.C., Udedi S.C., Kumar S. (eds.) Phytochemistry. Volume 1: Fundamentals, modern techniques and applications, pp. 381–426, 1st edition. Apple Academic Press, New York, NY. 10.1201/9780429426223

Elbaloula M.F. and Hassan A.B. 2022. Effect of different salt concentrations on the gamma-aminobutyric-acid content and glutamate decarboxylase activity in germinated sorghum (Sorghum bicolor L. Moench) grain. Food Sci Nutri. 10:2050–2056. 10.1002/fsn3.2821

Hassan Amro B., Al Maiman Salah A., Mohammed Mohammed A., Alshammari Ghedeir M., Alkhudhayri Dalal A., Alhuthayli Haya F., et al. 2021. Effect of natural fermentation on the chemical composition, mineral content, phytochemical compounds, and antioxidant activity of Ziziphus spina-christi (L.) “Nabag” seeds. Processes. 9:1228. 10.3390/pr9071228

Hur S.J., Lee S.Y., Kim Y.C., Choi I. and Kim G.B. 2014. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 160:346–356. 10.1016/j.foodchem.2014.03.112

Iqbal A., Khalil I.A., Ateeq N. and Khan M.S. 2006. Nutritional quality of important food legumes. Food Chem. 97:331–335. 10.1016/j.foodchem.2005.05.011

General Authority for Statistics. 2019. Agricultural production survey bulletin 2019. In: Agriculture production survey 2019 EN. pdf (stats.gov.sa).

General Authority for Statistics, Riyadh, Saudi Arabai. General Authority for Statistics | (stats.gov.sa)

Kapravelou G., Martínez R., Martino J., Porres J.M., Fernández-Fígares I. 2020. Natural fermentation of cowpea (Vigna unguiculata) flour improves the nutritive utilization of indispensable amino acids and phosphorus by growing rats. Nutrients. 12(8):2186. 10.3390/nu12082186

Kim D.O., Jeong S.W. and Lee C.Y. 2003. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81:321–326. 10.1016/S0308-8146(02)00423-5

Komatsuzaki N., Tsukahara K., Toyoshima H., Suzuki T., Shimizu N. and Kimura T. 2007. Effect of soaking and gaseous treatment on GABA content in germinated brown rice. J Food Engin. 78:556–560. 10.1016/j.jfoodeng.2005.10.036

Lazaridi E., Ntatsi G., Fernandez J.A., Karapanos I., Carnide V., Savvas D., et al. 2017. Phenotypic diversity and evaluation of fresh pods of cowpea landraces from Southern Europe. J Sci Food Agric. 97:4326–4333. 10.1002/jsfa.8249

Liao W.C., Wang C.Y., Shyu Y.T, Yu R.C., Ho K.C. 2013. Influence of preprocessing methods and fermentation of adzuki beans on γ-aminobutyric acid (GABA) accumulation by lactic acid bacteria. J Funct Foods. 5:1108–1115. 10.1016/j.jff.2013.03.006

Marathe S.A., Rajalakshmi V., Jamdar S.N. and Sharma A. 2011. Comparative study on antioxidant activity of different varieties of commonly consumed legumes in India. Food Chem Toxicol. 49:2005–2012. 10.1016/j.fct.2011.04.039

Ministry of Environment, Water, and Agriculture. 2019. The agricultural diary 2019. Annual report. agire2-1.pdf (d-abuomar.com). Ministry of Environment, Water, and Agriculture, Riyadh, Saudi Arabai. Ministry of Environment, Water and Agriculture (mewa.gov.sa)

Morris J.B. and Li Wang M. 2018. Updated review of potential medicinal genetic resources in the USDA, ARS, PGRCU industrial and legume crop germplasm collections. Ind Crops Prod. 123:470–479. 10.1016/j.indcrop.2018.07.014

Poojary M.M., Dellarosa N., Roohinejad S., Koubaa M., Tylewicz U., Gómez-Galindo F., et al. 2017. Influence of innovative processing on γ-aminobutyric acid (GABA) contents in plant food materials. Compr Rev Food Sci Food Saf. 16:895–905. 10.1111/1541-4337.12285

Seo M.J., Nam Y.D., Park S.L., Lee S.Y., Yi S.H. and Lim S.I. 2013. γ-Aminobutyric acid production in skim milk co-fermented with Lactobacillus brevis 877G and Lactobacillus sakei 795. Food Sci Biotechnol. 22:751–755. 10.1007/s10068-013-0141-6

Talhaoui N., Gómez-Caravaca A.M., León L., De la Rosa R., Segura-Carretero A. and Fernández-Gutiérrez A. 2014. Determination of phenolic compounds of “Sikitita” olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents “Arbequina” and “Picual” olive leaves. Food Sci Tech (LWT). 58:28–34. 10.1016/j.lwt.2014.03.014

Tenenhaus M., Pagès J., Ambroisine L. and Guinot C. 2005. PLS methodology to study relationships between hedonic judgements and product characteristics. Food Qual Prefer. 16:315–325. 10.1016/j.foodqual.2004.05.013

Turkmen N., Sari F., Poyrazoglu E.S. and Velioglu Y.S. 2006. Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem. 95:653–657. 10.1016/j.foodchem.2005.02.004

Vidal N.P., Manful C.F., Pham T.H., Stewart P., Keough D. and Thomas Raymond H. 2020. The use of XLSTAT in conducting principal component analysis (PCA) when evaluating the relationships between sensory and quality attributes in grilled foods. Methods X. 7:100835. 10.1016/j.mex.2020.100835

Waterhouse A.L. 2002. Determination of total phenolics. Curr Protoc Food Anal Chem. 6(1):I1.1.1–I1.1.8. 10.1002/0471142913.fai0101s06

Yadav N., Kaur D., Malaviya R., Singh M., Fatima M. and Singh L. 2018. Effect of thermal and non-thermal processing on antioxidant potential of cowpea seeds. Int J Food Sci Nutr. 21:437–451. 10.1080/10942912.2018.1431659

Zhang Q., Xiang J., Zhang L., Zhu X., Evers J., Werf W., et al. 2014. Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice. J. Funct Foods. 10:283–291. 10.1016/j.jff.2014.06.009