Polygonatum polysaccharide attenuates inflammation through inhibiting NLRP3 inflammasome in diabetic cardiomyopathy rats

Main Article Content

Chun-chun Zhao
Meng Zhang
Jian-fei Peng
Yao-yao Ma
Xiao-ni Zhao
Zhong-yu Wen
Shu-shu Wang
An-lu Shen
Hui Shi

Keywords

Polygonatum polysaccharides, NLRP3/Caspase-1 signaling pathway, inflammation, diabetic cardiomyopathy, NLRP3–caspase-1 signaling pathway, polygonatum polysaccharides

Abstract

Polygonatum polysaccharide (PP) has good myocardial protection. This study aims to find whether PP can relieve inflammation and play a protective role in diabetic cardiomyopathy (DCM). Intraperitoneal injection of streptozotocin was used to induce DCM in rats, which were then separated into four groups: model group, PP-200 group (200 mg/kg PP), PP-400 group (400 mg/kg PP), and Met group (120 mg/kg metformin). Both control (NC) and model groups of rats were administered normal saline. According to the kit instructions mentioned on the kit, the levels of blood glucose, glycosylated hemoglobin, insulin (INS), and myocardial enzymes (creatinine kinase, B-type natriuretic peptide, and cardiac troponin I) were measured after 8 weeks. Cardiac function was detected by echocardiography. Hematoxylin and eosin (HE) and Masson staining were used to observe pathological changes. Myocardial RNA and protein levels of NLR family pyrin domain containing 3 (NLRP3), caspase-1, and Gasdermin D (GSDMD) were quantified through reverse transcription-polymerase chain reaction and Western blotting analysis. The in vivo findings showed that PP could reduce blood glucose, glycosylated hemoglobin, and INS levels, enhance heart functioning, restore histological alterations and myocardial enzymes, and relieve myocardial fibrosis. Furthermore, PP suppressed the expressions of NLRP3, caspase-1, and GSDMD. PP could reduce inflammation in DCM rats by suppressing NLRP3 inflammasome.

Abstract 511 | PDF Downloads 865 HTML Downloads 359 XML Downloads 264

References

An, Y., Li, Y.X., and Yan, X.J., 2021. Improvement effects of Polygonatum sibiricum polysaccharides on myocardial injury of acute myocardial infarction model rats. China Pharmacy. 32(13): 1572–1577.

Chen, M., Xu, J., Wang, Y., Wang, Z., Guo, L., Li, X. and Huang, L., 2020. Arctium lappa L. polysaccharide can regulate lipid metabolism in type 2 diabetic rats through the SREBP-1/SCD-1 axis. Carbohydrate Research. 494: 108055. 10.1016/j.carres.2020.108055

Cui, X., Wang, S., Cao, H., Guo, H., Li, Y., Xu, F., et al. 2018. A review: the bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides. Molecules. 23(5): 1170. 10.3390/molecules23051170

Dong, X., Zhou, M., Li, Y., Li, Y., Ji, H. and Hu, Q. 2021. Cardiovascular protective effects of plant polysaccharides: a review. Front Pharmacol. 12: 783641. 10.3389/fphar.2021.783641

Ho, K.L., Karwi, Q.G., Connolly, D., Pherwani, S., Ketema, E.B., Ussher, J.R., et al. 2022. Metabolic, structural and biochemical changes in diabetes and the development of heart failure. Diabetologia. 65(3): 411–423. 10.1007/s00125-021-05637-7

Kaludercic, N. and Di Lisa, F. 2020. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front Cardiovasc Med. 7: 12. 10.3389/fcvm.2020.00012

Lei, S.P., Wang, L., Long, Z.J., Shi, H., Gao, H.W., Zhu, Y.H., et al. 2017. Inhibitory effect of Polygonatum sibiricum polysaccharides on release of inflammatory cytokines of anoxia/reoxygenation H9c2 myocardial cells through TLR4-MyD88-NF-κB signaling pathway. Chin Pharmacol Bull. 33(2): 255–260.

Li, S., Dong, S., Shi, B., Xu, Q., Li, L., Wang, S., et al. 2022. Attenuation of ROS/chloride efflux-mediated NLRP3 inflammasome activation contributes to alleviation of diabetic cardiomyopathy in rats after sleeve gastrectomy. Oxid Med Cell Longev. 2022: 4608914. 10.1155/2022/4608914

Liu, Q., Han, Q., Lu, M., Wang, H. and Tang, F. 2019. Lycium barbarum polysaccharide attenuates cardiac hypertrophy, inhibits calpain-1 expression and inhibits NF-κB activation in streptozotocin-induced diabetic rats. Exp Ther Med. 18(1): 509–516. 10.3892/etm.2019.7612

Liu, S., Jia, Q.J., Peng, Y.Q., Feng, T.H., Hu, S.T., Dong, J.E., et al. 2022. Advances in mechanism research on polygonatum in prevention and treatment of diabetes. Front Pharmacol. 13: 758501. 10.3389/fphar.2022.758501

Lu, Y., Lu, Y., Meng, J. and Wang, Z. 2022a. Pyroptosis and its regulation in diabetic cardiomyopathy. Front Physiol. 12: 791848. 10.3389/fphys.2021.791848

Lu, X., Tan, Q., Ma, J., Zhang, J. and Yu, P. 2022b. Emerging role of LncRNA regulation for NLRP3 inflammasome in diabetes complications. Front Cell Dev Biol. 9: 792401. 10.3389/fcell.2021.792401

Luo, B., Huang, F., Liu, Y., Liang, Y., Wei, Z., Ke, H., et al. 2017. NLRP3 inflammasome as a molecular marker in diabetic cardiomyopathy. Front Physiol. 8: 519. 10.3389/fphys.2017.00519

Ma, H.F., Fang, H.L., Shi, X.L., Ma, C.D., Lu, X.Y. and Chen, Y.B. 2018. Effect of polygonatum polysaccharides on the expression of ICAM-1 and VCAM-1 protein in heart tissue of cardiac remodeling mice. Global Trad Chin Med. 11(1): 25–29.

Ma, W., Wei, S., Peng, W., Sun, T., Huang, J., Yu, R., et al. 2021. Antioxidant effect of polygonatum sibiricum polysaccharides in D-galactose-induced heart aging mice. BioMed Res Int. 2021: 6688855. 10.1155/2021/9806412

Muñoz-Córdova, F., Hernández-Fuentes, C., Lopez-Crisosto, C., Troncoso, M.F., Calle, X., Guerrero-Moncayo, A., et al. 2021. Novel insights into the pathogenesis of diabetic cardiomyopathy and pharmacological strategies. Front Cardiovasc Med. 8: 707336. 10.3389/fcvm.2021.707336

Salvatore, T., Pafundi, P.C., Galiero, R., Albanese, G., Di Martino, A., Caturano, A., et al. 2021. The diabetic cardiomyopathy: the contributing pathophysiological mechanisms. Front Med. 8: 695792. 10.3389/fmed.2021.695792

Shi, H., Zhou, P., Ni, Y.Q., Wang, S.S., Song, R., Shen, A.L., et al. 2021. In vivo and in vitro studies of Danzhi Jiangtang capsules against diabetic cardiomyopathy via TLR4/MyD88/NF-κB signaling pathway. Saudi Pharm J. 29(12): 1432–1440. 10.1016/j.jsps.2021.11.004

Sun, S., Yang, S., An, N., Wang, G., Xu, Q., Liu, J., et al. 2019. Astragalus polysaccharides inhibits cardiomyocyte apoptosis during diabetic cardiomyopathy via the endoplasmic reticulum stress pathway. J Ethnopharmacol. 238: 111857. 10.1016/j.jep.2019.111857

Tang, Z., Wang, P., Dong, C., Zhang, J., Wang, X. and Pei, H. 2022. Oxidative stress signaling mediated pathogenesis of diabetic cardiomyopathy. Oxid Med Cell Longev. 2022: 5913374. 10.1155/2022/5913374

Wang, G., Fu, Y., Li, J., Li, Y., Zhao, Q., Hu, A., et al. 2021. Aqueous extract of Polygonatum sibiricum ameliorates ethanol-induced mice liver injury via regulation of the Nrf2/ARE pathway. J Food Biochem. 45(1): e13537. 10.1111/jfbc.13537

Wang, S., Li, G., Zhang, X., Wang, Y., Qiang, Y., Wang, B., et al. 2022. Structural characterization and antioxidant activity of Polygonatum sibiricum polysaccharides. Carbohydr Polym. 291: 119524. 10.1016/j.carbpol.2022.119524

Wang, W.M. and Tang, Q.Z. 2011. Early administration of trimetazidine may prevent or ameliorate diabetic cardiomyopathy. Med Hypotheses. 76(2): 181–183. 10.1016/j.mehy.2010.09.012

Wu, A., Sun, W. and Mou, F. 2021. lncRNA–MALAT1 promotes high glucose-induced H9C2 cardiomyocyte pyroptosis by downregulating miR-141-3p expression. Mol Med Rep. 23(4): 259. 10.3892/mmr.2021.11898

Xie, S.Z., Yang, G., Jiang, X.M., Qin, D.Y., Li, Q.M., Zha, X.Q., et al. 2020. Polygonatum cyrtonema Hua polysaccharide promotes GLP-1 secretion from enteroendocrine L-cells through sweet taste receptor-mediated cAMP signaling. J Agricul Food Chem. 68(25): 6864–6872. 10.1021/acs.jafc.0c02058

Xu, L., Chen, R., Zhang, X., Zhu, Y., Ma, X., Sun, G., et al. 2021. Scutellarin protects against diabetic cardiomyopathy via inhibiting oxidative stress and inflammatory response in mice. Ann Palliat Med. 10(3): 2481–2493. 10.21037/apm-19-516

Yin, X.J., Wang, B.B., Li, X.J., Zhu, C.L., Chen, P. 2021. Effects of Polygonatum sibiricum polysaccharide on JAK/STAT pathway and myocardial fibrosis in rats with autoimmune myocarditis. Immunol J. 37(1): 26–32.

Zhao, P., Zhao, C., Li, X., Gao, Q., Huang, L., Xiao, P., et al. 2018. The genus Polygonatum: a review of ethnopharmacology, phytochemistry and pharmacology. J Ethnopharmacol. 214: 274–291. 10.1016/j.jep.2017.12.006

Zhou, D.D., Luo, M., Shang, A., Mao, Q.Q., Li, B.Y., Gan, R.Y., et al. 2021. Antioxidant food components for the prevention and treatment of cardiovascular diseases: effects, mechanisms and clinical studies. Oxid Med Cell Longev. 2021: 6627355. 10.1155/2021/6627355

Zhu, X., Wu, W., Chen, X., Yang, F., Zhang, J. and Hou, J. 2018. Protective effects of Polygonatum sibiricum polysaccharide on acute heart failure in rats. Acta Cirurgica Bras. 33(10): 868–878. 10.1590/s0102-865020180100000001