Quality and safety evaluation of new tomato cultivars

Main Article Content

Mattia Rapa
Salvatore Ciano
Laura Gobbi
Roberto Ruggieri
Giulina Vinci

Keywords

antioxidants, biogenic amines, carotenoids, food safety and quality, phenolics, tomato

Abstract

This paper is aimed to provide a quality and safety assessment of new cherry tomato cultivars (Solanum Lycopersicum var. cerasiforme): Bamano, Dulcemiel, and Sugarland. Eight biogenic amines, total phenolics, total carotenoids, lycopene, and antioxidant activity (2,2-diphenyl-1-picrylhydrazyl [DPPH] and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt [ABTS] assays) were determined. Comparison with control cultivars demonstrated lower pH values, and total contents of biogenic amines and antioxidant compounds while having higher soluble solid concentration. Moreover, multivariate statistical analyses (principal component analysis and cluster analysis) were applied to the results. Different results allowed for a successful differentiation of new cultivars. Therefore, the chosen compounds resulted in suitable markers for quality and safety assessment of tomatoes.

Abstract 578 | PDF Downloads 428 HTML Downloads 582 XML Downloads 1

References

Al Bulushi I., Poole S., Deeth H.C. and Dykes G.A. 2009. Biogenic amines in fish: roles in intoxication, spoilage, and nitrosamine formation-a review. Crit. Rev. Food. Sci. Nutr. 49(4):369. 10.1080/10408390802067514

Antolinos V., Sánchez-Martínez M.J., Maestre-Valero J.F., López-Gómez A. and Martínez-Hernández G.B. 2020. Effects of irrigation with desalinated seawater and hydroponic system on tomato quality. Water. 12(2):518. 10.3390/w12020518

Armenta S. and de la Guardia M. 2016. Analytical approaches for the evaluation of food protected designation of origin. In: Espiñeira M. and Santaclara F.J. (eds.), Advances in food traceability techniques and technologies – improving quality throughout the food chain. Woodhead, Sawston, Cambridgeshire, Ch. 15, pp. 275–301. 10.1016/B978-0-08-100310-7.00015-6

Bajoub A., Ajal E.A., Fernández-Gutiérrez A. and Carrasco-Pancorbo A. 2016. Evaluating the potential of phenolic profiles as discriminant features among extra virgin olive oils from Moroccan controlled designations of origin. Food. Res. Int. 84:41. 10.1016/j.foodres.2016.03.010

Campestrini L.H., Melo P.S., Peres L.E.P., Calhelha R.C., Ferreira I.C.F.R. and Alencar S.M. 2019. A new variety of purple tomato as a rich source of bioactive carotenoids and its potential health benefits. Heliyon. 5(11):e02831. 10.1016/j.heliyon.2019.e02831

Carillo P., Kyriacou M.C., El-Nakhel C., Pannico A., dell’Aversana E., D’Amelia L., et al. 2019. Sensory and functional quality characterization of protected designation of origin ‘Piennolo del Vesuvio’ cherry tomato landraces from Campania-Italy. Food Chem. 292:166. 10.1016/j.foodchem.2019.04.056

Chiacchierini E., Restuccia D. and Vinci G. 2006. Evaluation of two different extraction methods for chromatographic determination of bioactive amines in tomato products. Talanta. 69(3):548. 10.1016/j.talanta.2005.10.027

Coyago-Cruz E., Corell M., Moriana A., Hernanz D., Benítez-González A.M., Stinco C.M., et al. 2018. Antioxidants (carotenoids and phenolics) profile of cherry tomatoes as influenced by deficit irrigation, ripening and cluster. Food Chem. 240:870. 10.1016/j.foodchem.2017.08.028

Dudonné S., Vitrac X., Coutiére P., Woillez M. and Mérillon J.M. 2009. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 57(5):1768. 10.1021/jf803011r

D’Evoli L., Lombardi-Boccia G. and Lucarini M. Influence of heat treatments on carotenoid content of cherry tomatoes. Foods. 2013 Sep; 2(3): 352–363. 10.3390/foods2030352

Fanasca S., Colla G., Maiani G., Venneria E., Rouphael Y., Azzini E., et al. 2006. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J. Agric. Food Chem. 54(12):4319. 10.1021/jf0602572

Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). 2019. Production of tomatoes: top 10 producers 2017. Available at: http://www.fao.org/faostat/en/#data

Fratoddi I., Rapa M., Testa G., Venditti I., Scaramuzzo F.A. and Vinci G. 2018. Response surface methodology for the optimization of phenolic compounds extraction from extra virgin olive oil with functionalized gold nanoparticles. Microchem. J. 138:430. 10.1016/j.microc.2018.01.043

Giuggioli N.R., Sottile F. and Peano C. 2016. Quality indicators for modified atmosphere packaging (MAP) storage of high-quality European plum (Prunus domestica L.) cultivars. Ital. J. Food Sci. 28:376. 10.14674/1120-1770/ijfs.v38

Guerreiro J.S., Barros M., Fernandes P., Pires P. and Bardsley R. 2013. Principal component analysis of proteolytic profiles as markers of authenticity of PDO cheeses. Food Chem. 136(3–4):1526. 10.1016/j.foodchem.2012.02.066

Handa A.K. and Mattoo A.K. 2010. Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol. Biochem. 48(7):540. 10.1016/j.plaphy.2010.02.009

Hano S., Shibuya T., Imoto N., Ito A., Imanishi S., Aso H., et al. Serotonin content in fresh and processed tomatoes and its accumulation during fruit development. Sci. Hortic. 214:107. 10.1016/j.scienta.2016.11.009

Ingallina C., Maccelli A., Spano M., Di Matteo G., Di Sotto A., Giusti A.M., et al. 2020a. Chemico-biological characterization of torpedino di Fondi® tomato fruits: a comparison with San Marzano cultivar at two ripeness stages. Antioxidants. 9(10):1027. 10.3390/antiox9101027

Ingallina C., Sobolev A.P., Circi S., Spano M., Fraschetti C., Filippi A., et al. 2020b. Cannabis Sativa L. inflorescences from monoecious cultivars grown in central Italy: an untargeted chemical characterization from early flowering to ripening. Molecules. 25(8):1908. 10.3390/molecules25081908

Ingallina C., Sobolev A.P., Circi S., Spano M., Giusti A.M. and Mannina L. 2020c. New hybrid tomato cultivars: an NMR-based chemical characterization. Appl. Sci. 10(5):1887. 10.3390/app10051887

Islam J., Shirakawa H., Nguyen T.K., Aso H. and Komai M. 2016. Simultaneous analysis of serotonin, tryptophan and tryptamine levels in common fresh fruits and vegetables in Japan using fluorescence HPLC. Food Biosci. 13:56. 10.1016/j.fbio.2015.12.006

Istituto Servizi Mercato Agricolo Alimentare. 2017. Report industrial tomatoes. Available at: http://www.ismea.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/10110

Kalač P. 2014. Health effects and occurrence of dietary polyamines: a review for the period 2005-mid 2013. Food Chem. 161:27. 10.1016/j.foodchem.2014.03.102

Linares D.M., Del Rio B., Redruello B., Ladero V., Martin M.C., Fernandez M., et al. 2016. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chem. 197(Pt A):658. 10.1016/j.foodchem.2015.11.013

Liu F.X., Fu S.F., Bi X.F., Chen F., Liao X.J., Hu X.S., et al. 2013. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chem. 138(1):396. 10.1016/j.foodchem.2012.09.111

Liu H., Meng F., Chen S., Yin T., Hu S., Shao Z., et al. 2019. Ethanol treatment improves the sensory quality of cherry tomatoes stored at room temperature. Food Chem. 298:125069. 10.1016/j.foodchem.2019.125069

Lu C., Ding J., Park H.K. and Feng H. 2020. High-intensity ultrasound as a physical elicitor affects secondary metabolites and antioxidant capacity of tomato fruits. Food Control. 113:107176. 10.1016/j.foodcont.2020.107176

Marengo E., Mazzucco E., Robotti E., Gosetti F., Manfredi M. and Calabrese G. 2017. Characterization study of tomato sauces stored in different packaging materials. Curr. Anal. Chem. 13(3):187. 10.2174/1573411012666160504125330

Masetti O., Ciampa A., Nisini L., Valentini M., Sequi P. and Dell’Abate M.T. 2014. Cherry tomatoes metabolic profile determined by 1H-high resolution-NMR spectroscopy as influenced by growing season. Food Chem. 162:215. 10.1016/j.foodchem.2014.04.066

Nambeesan S., Datsenka T., Ferruzzi M.G., Malladi A., Mattoo A.K. and Handa AK. 2010. Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J. 63(5):836. 10.1111/j.1365-313X.2010.04286.x

Nur Azira T., Che Man Y.B., Raja Mohd Hafidz R.N., Aina M.A. and Amin I. 2014. Use of principal component analysis for differentiation of gelatine sources based on polypeptide molecular weights. Food Chem. 151:286. 10.1016/j.foodchem.2013.11.066

Palomino-Vasco M., Acedo-Valenzuela M.I., Rodríguez-Cáceres M.I. and Mora-Diez N. 2019. Automated chromatographic method with fluorescent detection to determine biogenic amines and amino acids. Application to craft beer brewing process. J. Chromatogr A. 1601:155. 10.1016/j.chroma.2019.04.063

Pataro G., Sinik M., Capitoli M.M., Donsì G. and Ferrari G. 2015. The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innov. Food. Sci. Emerg. Technol. 2015:103. 10.1016/j.ifset.2015.06.003

Peralta I. and Spooner D. 2014. History, origin and early cultivation of tomato (Solanaceae). In: Razdan M.K. and Matoo A.K. (eds.), Genetic improvement of solanaceous crop, Vol 2. Science Publishers, Enfiled, NH, pp. 1–24. 10.1201/b10744-2

Preti R., Rapa M. and Vinci G. 2017. Effect of steaming and boiling on the antioxidant properties and biogenic amines content in green bean (Phaseolus vulgaris) varieties of different colours. J. Food. Qual. 2017:5329070. 10.1155/2017/5329070

Raffo A., Leonardi C., Fogliano V., Ambrosino P., Salucci M., Gennaro L., et al. 2002. Nutritional value of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 50(22):6550. 10.1021/jf020315t

Ramos R.M., Brandão P.F. and Rodrigues J.A. 2020. Development of a SALLE-HPLC-FLD analytical method for the simultaneous determination of ten biogenic amines in cheese. Food Anal. Methods. 13:1088. 10.1007/s12161-020-01730-6

Riga P., Benedicto L., García-Flores L., Villaño D., Medina S. and Gil-Izquierdo Á. 2016. Rootstock effect on serotonin and nutritional quality of tomatoes produced under low temperature and light conditions. J. Food Compos. Anal. 46:50. 10.1016/j.jfca.2015.11.003

Šamec D., Maretić M., Lugarić I., Mešić A., Salopek-Sondi B. and Duralija B. 2016. Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis. Food Chem. 194:828. 10.1016/j.foodchem.2015.08.095

Sánchez-Pérez S., Comas-Basté O., Rabell-González J., Veciana-Nogués M., Latorre-Moratalla M. and Vidal-Carou M. 2018. Biogenic amines in plant-origin foods: are they frequently underestimated in low-histamine diets? Foods. 7(12):205. 10.3390/foods7120205

Selli S., Kelebek H., Ayseli M.T. and Tokbas H. 2014. Characterization of the most aroma-active compounds in cherry tomato by application of the aroma extract dilution analysis. Food Chem. 165:540. 10.1016/j.foodchem.2014.05.147

Silla Santos M.H. 1996. Biogenic amines: their importance in foods. Int. J. Food Microbiol. 29(2–3):213. 10.1016/0168-1605(95)00032-1

Szabo K., Cătoi A.F. and Vodnar D.C. 2018. Bioactive compounds extracted from tomato processing by-products as a source of valuable nutrients. Plant Foods Hum. Nutr. 73(4):268. 10.1007/s11130-018-0691-0

Tonolo F., Moretto L., Folda A., Scalcon V., Bindoli A., Bellamio M., et al. 2019. Antioxidant properties of fermented soy during shelf life. Plant Foods Hum. Nutr. 74(3):287. 10.1007/s11130-019-00738-6

Uarrota V.G., Moresco R., Coelho B., Nunes E.D.C., Peruch L.A.M., Neubert E.D.O., et al. 2014. Metabolomics combined with chemometric tools (PCA, HCA, PLS-DA and SVM) for screening cassava (Manihot esculenta Crantz) roots during post-harvest physiological deterioration. Food Chem. 161:67. 10.1016/j.foodchem.2014.03.110