VALORIZATION OF RED GRAPE (VITIS VINIFERA CV. SANGIOVESE) POMACE AS FUNCTIONAL FOOD INGREDIENT

Main Article Content

G. CARULLO
U.G. SPIZZIRRI
M.R. LOIZZO
M. LEPORINI
V. SICARI
F. AIELLO
D. RESTUCCIA

Keywords

antioxidant activity, kefir, grape pomace, ultrasound-assisted extraction, HPLC-DAD, metabolic syndrome, lipase inhibition

Abstract

The winemaking process generates large amounts of by-products that are still a potential source of bioactive compounds to be used as functional food ingredients. This study is aimed to develop a cow milk kefir fortified with  Sangiovese red grape pomace.  The phenolic extracts of skins and seeds, which were obtained after infusion and ultrasound-assisted extraction (UAE), were rich in (+)-catechin (105.0±147.0 mg/L) and (-) epicatechin (76.0±364.0  mg/L) based on HPLC-DAD  analysis. The UAE-derived skin extracts were selected for their best antioxidant effectiveness and incorporated into kefir,  whose functional properties have been investigated through spectrophotometric assays. The addition of UAE-derived skin extract to kefir was significantly effective in enhancing the total phenolic content (43.2 %) thus increasing the total antioxidant capacity (+47.7 %) and lowering IC50ABTS (-36.0%) and DPPH (-31.45%). An increased inhibitory activity towards α-amylase,  α-glucosidase and pancreatic lipase was also achieved by decreasing the corresponding IC50 values (69.39 and 73.01 "g/mL, respectively).

Abstract 181 | pdf Downloads 60

References

Akaberi M. and Hosseinzadeh H. 2016. Grapes (Vitis vinifera) as a potential candidate for the therapy of the metabolic syndrome. Phytother. Res. 30:540-556. DOI:doi.org/10.1002/ptr.5570

Babbar N., Oberoi H.S., Uppal D.S. and Patil, R.T. 2011. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Int. 44:391-396. DOI:doi.org/10.1016/j.foodres.2010.10.001

BeresC., Costa G.N.S., Cabezudo I., da Silva-James N.K., Teles A.S.C., Cruz A.P.G., Mellinger-Silva C., Tonon R.V., Cabral L.M.C. and Freitas, S.P. 2017. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manage. 68:581-594. DOI:doi.org/10.1016/J.WASMAN.2017.07.017

Bladé C., Aragonès G., Arola-Arnal A., Muguerza B., Bravo F.I., Salvadó M.J., Arola L. and Suárez M. 2016. Proanthocyanidins in health and disease. Biofactors 42(1):5-12. DOI:doi.org/10.1002/biof.1249.

Bucić-Kojić A., Planinić M., Tomas S., Jakobek L. and Šeruga, M. 2009. Influence of solvent and temperature on extraction of phenolic compounds from grape seed, antioxidant activity and colour of extract. Int. J. Food Sci. Technol. 44:2394-2401. DOI:doi.org/10.1111/j.1365-2621.2008.01876.x

Carrera C., Ruiz-Rodríguez A., Palma M. and Barroso C.G. 2012. Ultrasound assisted extraction of phenolic compounds from grapes. Anal. Chim.Acta 732:100-104. DOI:doi.org/10.1016/j.aca.2011.11.032

Carullo G., Durante M.,Sciubba F., Restuccia D., Spizzirri U.G., Ahmed A., Di Cocco M.E., Saponara S.B., Aiello F. and Fusi F. 2019. Vasoactivity of Mantonico and Pecorello grape pomaces on rat aorta rings: An insight into nutraceutical development. J. Funct. Foods 57:328-334. DOI:doi.org/10.1016/j.jff.2019.04.023

Carullo G., Governa P., Spizzirri U.G., Biagi M., Sciubba F., Giorgi G., Loizzo M.R., Di Cocco M.E., Aiello F., and Restuccia D. 2020. Sangiovese cv Pomace Seeds Extract-Fortified Kefir Exerts Anti-Inflammatory Activity in an In Vitro Model of Intestinal Epithelium Using Caco-2 Cells. Antioxidants 9:54. DOI:doi.org/10.3390/antiox9010054.

Chiva-Blanch G. and Badimon L. 2017. Effects of Polyphenol Intake on Metabolic Syndrome: Current Evidences from Human Trials. Oxid. Med. Cell Longev. 2017:5812401. DOI:doi.org/10.1155/2017/5812401

Cirillo G., Curcio M., Vittorio O., Iemma F., Restuccia D., Spizzirri U.G., Puoci, F. and Picci N. 2016. Polyphenol conjugates and human health: a perspective review. Crit. Rev. Food Sci.Nutr. 52:326-337. DOI:doi.org/10.1080/10408398.2012.752342

Cirillo G., Puoci F., Iemma F., Curcio M., Parisi O.I., Spizzirri U.G., Altimari I. and Picci N. 2012. Starch-quercetin conjugate by radical grafting: synthesis and biological characterization.Pharm. Dev. Technol. 17:466-476. DOI:doi.org/10.3109/10837450.2010.546413

Coda R., Larena A., Trani A., Gobbetti M. and Cagno R.D. 2012. Yogurt-like beverages made of a mixture of cereals, soy and grape must: microbiology, texture, nutritional and sensory properties. Int. J. Food Microbiol. 155:120-127. DOI:doi.org/10.1016/j.ijfoodmicro.2012.01.016

Costabile G., Vitale M., Luongo D., Naviglio D., Vetrani C., Ciciola P., Tura A., Castello F., Mena P., Del Rio D., Capaldo B., Rivellese A., Riccardi G. and Giacco, R. 2019. Grape pomace polyphenols improve insulin response to a standard meal in healthy individuals: A pilot study. Clin. Nutr. 38:2727-2734. DOI:doi.org/10.1016/j.clnu.2018.11.028

Cueva C., Moreno-Arribas M.V., Martín-ÁlvarezP.J., Bills G., Vicente M.F., Basilio A., Rivas C.L., Requena T., Rodríguez J.M. and Bartolomé B. 2010. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol. 161:372-382. DOI:doi.org/10.1016/j.resmic.2010.04.006

Dos Santos K.M., de Oliveira I.C., Lopes M.A., Cruz A.P., Buriti F.C. and Cabral L.M. 2017. Addition of grape pomace extract to probiotic fermented goat milk: The effect on phenolic content, probiotic viability and sensory acceptability. J.Sci. Food Agric. 97(4):1108-1115. DOI:doi.org/10.1021/jf102759e

Doshi P., Adsule P., Banerjee K. and Oulkar D. 2015. Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis viniferaL) byproducts. J. Food Sci. Technol. 52:181-190. DOI:doi.org/10.1007/s13197-013-0991-1

Dwyer K., Hosseinian F. and Rod M. 2014. The market potential of grape waste alternatives. J. Food Res. 3:91-106. DOI:doi.org/10.5539/jfr.v3n2p91

El-shiekh R.A., Al-Mahdy D.A., Hifnawy M.S. and Abdel-Sattar E.A. 2019. In vitro screening of selected traditional medicinal plants for their anti-obesity and anti-oxidant activities. South Afr. J. Bot. 123:43-50

European Union. COMMISSION REGULATION (EC) No 555/2008 of 27 June 2008 laying down detailed rules for implementing Council Regulation (EC) No 479/2008 on the common organisation of the market in wine as regards support programmes, trade with third countries, production potential and on controls in the wine sector. Off. J. EU 2008, L/170, 1-80

Fernàndez-Marìn M.I., Guerrero R.F., Puertas B., Garcìa-Parrilla M.C. and Cantos-Villar E. 2013. Functional grapes. In “Natural Products”. K.G. Ramawat and J.M. Mérillon (Eds), Springer-Verlag: Berlin Heidelberg, Volume 1, p. 2581-2606

Fernando I.P.S., Sanjeewa K.K.A., Samarakoon K.W., Lee W.W., Kim H.-S. and Jeon, Y.-J. 2018. Squalene isolated from marine macroalgae Caulerpa racemosa and its potent antioxidant and anti-inflammatory activities. J. Food Biochem. 42:e12628. DOI:doi.org/10.1111/jfbc.12628

Fontana A.R., Antoniolli A. and Bottini R. 2013. Grape pomace as a sustainable source of bioactive compounds: extraction, characterization, and biotechnological applications of phenolics. J. Agric. Food Chem. 61:8987-9003. DOI:doi.org/10.1021/jf402586f.

Galanakis C.M. 2012. Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 26:68-87. DOI: doi.org/10.1016/j.tifs.2012.03.003

García-Lomillo, J., Gonzalez-SanJose, M. L., Del Pino-García, R., Rivero-Perez, M. D. and Muniz-Rodriguez, P. 2014. Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry. J. Agr. Food Chem. 62:12595-12602. DOI: doi.org/10.1021/jf5042678

García-Lomillo J. and González-SanJosé M.L. 2017. Applications of wine pomace in the food industry: approaches and functions. Compr. Rev. Food Sci. F. 16:3-22. DOI: doi.org/10.1111/1541-4337.12238

Gengaihi S.E., Ella F.M.A., Emad M.H., Shalaby E. and Doha H. 2014. Antioxidant Activity of Phenolic Compounds from Different Grape Wastes. J. Food Process. Technol. 5:296. DOI: doi.org/10.4172/2157-7110.1000296

Ghazi I., Abdel R. and Hassan A. 2018. Evaluation of antidiabetic and antihyperlipidimic activity of Kefir in alloxan induced diabetes mellitus rat. Sci. J. Med. Res. 2:83-86.

Gođevac D., Tešević V., Veličković M., Vujisica L., Vajs V. and Milosavljević S. 2010. Polyphenolic compounds in seeds from some grape cultivars grown in Serbia. J. Serbian Chem. Soc. 75: 1641-1652. DOI: doi.org/10.2298/JSC100519131G

Gonçalves G.A., Soares A.A., Barros . Haminiuk C., Peralta R., Ferreira I., and Bracht A. 2017. Merlot grape pomace hydroalcoholic extract improves the oxidative and inflammatory states of rats with adjuvant-induced arthritis. J. Functional Foods. 33:408-418. DOI: doi.org/10.1016/j.jff.2017.04.009

Hassan H.M.M. 2014. Inhibitory Effects of Red Grape Seed Extracts on Pancreatic α-amylase and lipase. Glob. J. Biotechnol. Biochem. 9(4):130-136. DOI: doi.org/10.5829/idosi.gjbb.2014.9.4.1114

Jara-Palacios M.J., Hernanz D., Cifuentes-Gomez T., Escudero-Gilete M.L., Heredia F.J. and Spencer J.P.E. 2015. Assessment of white grape pomace from winemaking as source of bioactive compounds, and its antiproliferative activity. Food Chem. 183, 78–82. DOI: doi.org/10.1016/j.foodchem.2015.03.022

Jiménez M., Juárez N., Jiménez-Fernández V.M., Monribot-Villanueva J.L. and Guerrero-Analco J.A. 2018. Phenolic compounds and antioxidant activity of wild grape (Vitis tiliifolia). Ital. J. Food Sci. 30:128-143.

Kammerer D., Claus A., Carle R. and Schieber A. 2004. Polyphenol screening of pomace from red and white grape varieties (Vitis viniferaL.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 52:4360-4367. DOI: doi.org/10.1021/jf049613b

Kaneto H., Katakami N., Matsuhisa M. and Matsuoka T. 2010. Role of Reactive Oxygen Species in the Progression of Type 2 Diabetes and Atherosclerosis. Mediat. Inflamm. Article ID 453892. DOI: doi.org/10.1155/2010/453892

Karaaslan M., Ozden M., Vardin H. and Turkoglu H. 2011. Phenolic fortification of yogurt using grape and callus extracts. LWT. 44:1065-1072. DOI: doi.org/10.1016/j.lwt.2010.12.009

Katalinić, V., Možina, S. S., Skroza, D., Generalić, I., Abramovič, H., Miloš, M., Ljubenkov I., Piskernik S., Pezo, I., Terpinc P. and Boban, M. 2010. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 119:715-72. DOI: doi.org/10.1016/j.foodchem.2009.07.019

Leporini M., Tundis R., Sicari V., Pellicanò T., Dugay A., Brigitte D. and Loizzo M.R. 2020. Impact of extraction processes on phytochemicals content and biological activity of Citrus × clementinaHort. Ex Tan. leaves: new opportunity for under-utilized food by-products. Food Res. Int. 127:108742. DOI: doi.org/10.1016/j.foodres.2019.108742

Loizzo M., Tundis R., Dall'Acqua S., Ilardi V., Leporini M., Falco T., Sicari V. and Bruno M. 2019. High-Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry (HPLC-ESI-MSn) Analysis and Bioactivity Useful for Prevention of “Diabesity” of Allium commutatum Guss. Plant FoodsHum. Nutr. DOI: doi.org/10.1007/s11130-019-00782-2.

Loizzo M.R., Sicari V., Tundis R., Leporini M., Falco T. and Calabrò V. 2019. The influence of ultrafiltration of Citrus limon L. Burm. cv Femminello comune juice on its chemical composition and antioxidant, and hypoglycaemic properties. Antioxidants, 8:23. DOI: doi.org/10.3390/antiox8010023

Loizzo M.R., Sicari V., Pellicanò T., Xiao J., Poiana M. and Tundis R. 2019. Comparative analysis of chemical composition, antioxidant and anti-proliferative activities of Italian Vitis vinifera by-products for a sustainable agro-industry. Food Chem.Toxicol. 127:127-134. DOI: doi.org/10.1016/j.fct.2019.03.007

Marchiani R, Bertolino M, Belviso S, Giordano M, Ghirardello D, Torri L, Piochi M, and Zeppa G. 2016. Yogurt enrichment with grape pomace: effect of grape cultivar on physicochemical, microbiological and sensory properties. J. Food Quality 39:77-89. DOI: doi.org/10.1111/jfq.12181

Mendoza L., Milena C., Vivanco M., Matsuhiro B., Torres S. and Aguirre M. 2012. Evaluation of antifungal properties against the phytopathogenic fungus botrytis cinerea of anthocyanin rich-extracts obtained from grape pomaces. J. Chilean Chem. Soc. 58:1725-1727. DOI: doi.org/10.4067/S0717-97072013000200018

Mendrick D.L., Diehl A.M., Topor L.S., Dietert R.R., Will Y., La Merrill M.A., Bouret S., Varma V., Hastings K.L., Schug T.T., Emeigh Hart S.G. and Burleson F.G. 2018. Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicol Sci. 162(1):36-42. DOI: doi.org/10.1093/toxsci/kfx233.

Moreno D.A., Ilic N., Poulev A., Brasaemle D.L., Fried S.K. and Raskin I. 2003. Inhibitory effects of grape seed extract on lipases. Nutrition 19(10):876-879. DOI: doi.org/10.1016/S0899-9007(03)00167-9

Najgebauer-Lejko D. and Sady M. 2015. Estimation of the antioxidant activity of the commercially available fermented milks. Acta Sci. Pol. Technol. Aliment. 14:387-396. DOI: doi.org/10.17306/J.AFS.2015.4.38

Ostadrahimi A., Taghizadeh A., Mobasseri M., Farrin, M., Payahoo, L.,Beyramalipoor Gheshlaghi Z. andVahedjabbariM. 2015. Effect of probiotic fermented milk (kefir) on glycemic control and lipid profile in type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Iran J. Public Health. 44(2):228-237.

Ozcan T., Sahin S., Akpinar-Bayizit A. and Yilmaz-Ersan L. 2019. Assessment of antioxidant capacity by method comparison and amino acid characterisation in buffalo milk kefir. Int. J.Dairy Technol. 72:65-73. DOI: doi.org/10.1111/1471-0307.12560

Perna A., Simonetti A. and Gambacorta E. 2019. Phenolic content and antioxidant activity of donkey milk kefir fortified with sulla honey and rosemary essential oil during refrigerated storage. Int. J.DairyTechnol. 72(1):74-81.DOI: doi.org/10.1111/1471-0307.12561

Restuccia D., Sicari V., Pellicanò T.M., Spizzirri U.G. and Loizzo M.R. 2017. The impact of cultivar on polyphenol and biogenic amine profiles in Calabrian red grapes during winemaking. Food Res. Int. 102:303-312. DOI: doi.org/10.1016/j.foodres.2017.10.012

Restuccia D., Giorgi G., SpizzirriU.G., Sciubba F., Capuani G., Rago V., Carullo G. and Aiello F. 2019. Autochthonous white grape pomaces for the development of functional jams. Int. J. Food Sci. Technol. 54:1313-1320. DOI: doi.org/10.1111/ijfs.14045

Restuccia D., Spizzirri U.G., Chiricosta S., Puoci F., Altimari I. and Picci, N. 2011. Antioxidant properties of extra virgin olive oil from cerasuola cv olive fruit: Effect of stone removal. It. J. Food Sci. 23:62-71.

Settanni L., Cruciata M., Guarcello R., Francesca N., Moschetti G., La Carrubba V., and Gaglio R. 2019. Valorisation of Dairy Wastes Through Kefr Grain Production. Waste and Biomass Valorization. DOI: doi.org/10.1007/s12649-019-00718-6

Spigno G. and De Faveri D.M. 2007. Antioxidants from grape stalks and marc: influence of extraction procedure on yield, purity and antioxidant power of the extracts. J. Food Eng.78:793-801.DOI: doi.org/10.1016/j.jfoodeng.2005.11.020

Spizzirri U.G., Altimari I., Puoci F., Parisi O.I., Iemma F. and Picci N. 2011. Innovative antioxidant thermo-responsive hydrogels by radical grafting of catechin on inulin chain. Carbohydr. Polym. 84:517-523. DOI: doi.org/10.1016/j.carbpol.2010.12.015

Tang G.Y., Zhao C.N., Liu Q., Feng X.L., Xu X.Y., Cao S.Y., Meng X., Li S., Gan R.Y. and Li H.B. 2018. Potential of grape wastes as a natural source of bioactive compounds. Molecules 23:2598-2618. DOI: doi.org/10.3390/molecules23102598

Teixeira A., Baenas N., Dominguez-Perles R., Barros A., Rosa E., Moreno D.A. and Garcia-VigueraC. 2014. Natural bioactive compounds from winery by-products as health promoters: a review. Intl. J. Mol. Sci. 15:15638-15678. DOI: doi.org/10.3390/ijms150915638

Tseng A., and Zhao Y. 2013. Wine grape pomace as antioxidant dietary fibre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem 138:356-65. DOI: doi.org/10.1016/j.foodchem.2012.09.148

Tundis R., Loizzo M.R., Bonesi M., Sicari V., Ursino C., Manfredi I., Conidi C., Figoli A. and Cassano A. 2018. Concentration of bioactive compounds from elderberry (Sambucus nigra L.) juice by nanofiltration membranes. Plant Foods Hum. Nutr. 73:336-343. DOI: doi.org/10.1007/s11130-018-0686-x.

Xia E., He X., Li H., Wu S., Li S. and Deng G. 2014. Biological activities of polyphenols from grapes. In “Polyphenols in Human Health and Disease”. R.R. Watson, V.R. Preedy and S. Zibadi (Eds.) Volume 1, p. 47-58. Academic Press: San Diego, CA.

Xia E.Q., Deng G.F., Guo Y.J. and Li H.B. 2010. Biological activities of polyphenols from grapes. Intl. J. Mol. Sci. 11:622-646. DOI: doi.org/10.3390/ijms11020622

Yu J. and Ahmedna, M. 2013. Functional components of grape pomace: their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 48:221-237. DOI: doi.org/10.1111/j.1365-2621.2012.03197.x