BROMATOLOGICAL COMPOSITION AND EFFECT OF TEMPERATURE ON THE RHEOLOGY OF EGGPLANT PULP

Main Article Content

R. MARSIGLIA
L. MIELES-GÓMEZ
S. LASTRA
S.E. QUINTANA
L.A. GARCÍA-ZAPATEIRO

Keywords

Carreau-Yasuda model, eggplant (Solanummelongena), bromatological analysis, pulp, rheological behavior, shear thinning

Abstract

This study aimed to determine the bromatological composition and the behavior of rheological parameters on the pulp eggplant (Solanum melongena). Bromatological analyzes were performed according to the reference methods, in which a percentage of moisture 90.98%, total carbohydrates 6.86%, crude fiber 1.94%, crude protein 1.19%, Fat 0.31% and 0.49% of ash has been obtained. Viscous flow curves were calculated in the steady state over a temperature range of 10-80ºC, and the rheological properties of the pulp were evaluated as a function of temperature. The pulp showed pseudoplastic behavior (shear thinning type) at all temperatures, and the relationship between viscosity and the Carreau-Yasuda model (R2>0.99). The Arrhenius equation was fitted to the data for the apparent viscosity of the pulp with respect to temperature, with activation energy Ea=1081.61 J/mol. The results provide information on bromatological composition and the rheological behavior of eggplant pulp and may have applications in the design of processes using this raw material.
Abstract 131 | pdf Downloads 82

References

Alves Dos Santos K., Machado L., Sossela De Freitas R.and Cachoeira Stertz S. 2002. Composição química da berinjela (Solanum melongena L.). B. Ceppa, Curitiba. 20:247.

Andrade R., Torres R., Montes E. and Pérez O. 2009. Efecto de la temperatura en el comportamiento reológico de la pulpa de níspero (Achras sapota L.). Rev. Fac. Agron. 26(4).

Andrade-Pizarro R., Torres-Gallo R., Montes-Montes E., Pérez-Sierra O., Bustamante-Vargas C. and Mora-Vargas B. 2010. Effect of temperature on the rheological behavior of zapote pulp (Calocarpum sapota Merr). Rev.Téc. Ing. Univ. Zulia 33(2).

Aramendiz-Tatis H., Espitia M. and Cardona C. 2010. Análisis de sendero en Berenjena (Solanum melongena L.). Revista U.D.C.A Actualidad & Divulgación Científica 13(1):115.

Augusto P., Ibarz A. and Cristianini M. 2012. Effect of high pressure homogenization (HPH) on the rheological properties of a fruit juice serum model. J. Food Eng. 111:474. DOI: doi.org/10.1016/j.jfoodeng.2012.02.033

Bhandari P., Singlhal R. and Kale D. 2002. Effect of succinylation on the rheological profile of starch pastes. Carbohydr. Polym. 47:365. DOI: doi.org/10.1016/S0144-8617(01)00215-6

Cañas-Ángel Z., Restrepo-Molina. D. and Cortés-Rodríguez M. 2011. Revisión: Productos vegetales como fuente de fibra dietaria en la industria de alimentos.Rev. Fac. Nal. Agr. Medellín. 64(1):6023.

Carreau P. 1972. Rheological equations from molecular network theories. Trans. Soc. Rheol. 16:99. DOI: doi.org/10.1122/1.549276

Dak M., Verma R. and Jaaffrey S. 2007. Effect of temperature and concentration on rheological properties of “Kesar” mango juice. J. Food Eng. 80:1011. DOI: doi.org/10.1016/j.jfoodeng.2006.08.011

Dak M., Verma R. and Jaaffrey S. 2008. Rheological properties of tomato concentrate. Int. J. Food Eng. 4(7): article 11. DOI: doi.org/10.2202/1556-3758.1470

De Castilhos M., Betiol L., De Carvalho G. and Telis-Romero J. 2017. Experimental study of physical and rheological properties of grape juice using different temperatures and concentrations. Part I: Cabernet Sauvignon. Food Res. Int. 724. DOI: doi.org/10.1016/j.foodres.2017.07.075

Díaz-Ocampo R., García-Zapateiro L., Franco-Gomez J. and Vallejo-Torres C. 2012. Caracterización bromatológica, fisicoquímica microbiológica y reológica de la pulpa de borojó (borojoa patinoi cuatrec). Ciencia y Tecnología 5(1):17.

FAO. 2015. Organización de las naciones unidas para la agricultura y la alimentación.[En línea]. Available: www.fao.org/faostat/es/?#data/QC/visualize

Figueroa-Flórez J., Barragán-Viloria K.and Salcedo-Mendoza J. 2017. Comportamiento reológico en pulpa edulcorada de mango (Mangifera indica L. cv. Magdalena river). Corpoica, Cienc Tecnol Agropecuaria 18(3):615. DOI: doi.org/10.21930/rcta.vol18_num3_art:748

Franco J. M., Gallegos C. and Barnes H. A.1998. On slip effects in steady-state flow measurements of oil-in-water food emulsions, J. Food Eng. 36(1):89-102. DOI: doi.org/10.1016/s0260-8774(98)00055-7

García E., Hernández E., Aramendiz H. and De Paula C. 2003. Caracterizacion bromatologica de la berenjena (Solanum melongena L.) en el departamento de Cordoba. Temas Agrarios 8(1):27.

Guerrero S. and Alzamora S. 1998. Effect of pH, temperature and glucose addition on flow behaviour of fruit purees: II. Peach, papaya and mango purées. J. Food Eng. 37:77. DOI: doi.org/10.1016/S0260-8774(98)00065-X

Holdsworth, S. 1971. Applicability of rheological models to the interpretation of flow and processing behaviour of fluid food products. J. Texture Stud. 2:393. DOI: doi.org/10.1111/j.1745-4603.1971.tb00589.x

Ibarz A., Garvín A. and Costa J. 1996. Rheological behavior of sloe (Prunus spinosa) juices. J. Food Eng. 27: 423. DOI: doi.org/10.1016/0260-8774(95)00024-0

Ibarz A., Gonzalez C. and Esplugas S. 1996. Rheology of clarified passion fruit juices. Fruit Process. 6(8):330. DOI: doi.org/10.1111/j.1745 4603.1971.tb00589.x

Instituto Colombiano de Bienestar Familiar (ICBF). 2015. Tabla de composicion de alimentos colombianos. Bogotá. www.icbf.gov.co/sites/default/files/tcac_2015_final_para_imprimir.pdf

Memnune S., Fatih M. and Mustafa E. 2005. Rheological, physical and chemical characteristics of mulberry pekmez. Food Control 16:73. DOI: doi.org/10.1016/j.foodcont.2003.11.010

Méndez-Sánchez A., Pérez-Trejo L. and Paniagua Mercado A. 2010. Determinación de la viscosidad defluidos newtonianos y no Newtonianos (una revisión del viscosímetro de Couette). Latin-American Journal of Physics Education 4(1):23.

Moreiras O., Carbajal A., Cabrera L. and Cuadrado C. 2013. Tablas de composición de alimentos. España: Ediciones Pirámide. 16th ed.

Muller H. 1973. An introduction to food rheology. London. Cap. 6:57. Heinemann.

Muñoz E., Rubio L. and Cabeza M. 2012. Comportamiento de flujo y caracterización fisicoquímica de pulpas de Durazno. Scientia Agropecuaria 2:107. DOI: doi.org/10.17268/sci.agropecu.2012.02.01

Niño-Medina G., Urías-Orona V., Muy-Rangel M. and Heredia J. 2017. Structure and content of phenolics in eggplant (Solanum melongena). S. Afr. J. Bot. 111: 161. DOI: doi.org/10.1016/j.sajb.2017.03.016

Nisha P., Abdul N. and Jayamurthy P. 2009. Comparative study on antioxidant activities of different varieties of Solanum melongena. Food Chem. Toxicol. 47:2640. DOI: doi.org/10.1016/j.fct.2009.07.026

Ortega-Quintana E., Salcedo-Galván E., Arrieta-Rivero R. and Torres-Gallo R. 2015. Efecto de la temperatura y concentración sobre las propiedades reológicas de la pulpa de mango variedad Tommy Atkins. Revista Ion. 28(2):79. DOI: doi.org/10.18273/revion.v28n2-2015007

Pelegrine D., Silva F. and Gasperrato C. 2002. Rheological behavior of mango and pineapple pulps. LWT Food Sci. Technol. 35(1):645. DOI: doi.org/10.1006/fstl.2002.0920

Pereira C., De Resende J.and Giarola T. 2014. Relationship between the thermal conductivity and rheological behavior of acerola pulp: Effect of concentration and temperature. LWT Food Sci. Technol. 58:446. DOI: doi.org/10.1016/j.lwt.2014.04.016

Quintana S., Marsiglia R., Torregroza E., Franco J. and García-Zapateiro, L. 2016. Efecto del tratamiento térmico sobre las propiedades reológicasde la pulpa de ahuyama (Cucurbita moschata). Agron. Colomb. 34(1):659.

Quintana S., Granados C. and García-Zapateiro L. 2017. Propiedades reológicas de la pulpa de papaya (Carica papaya). Información Tecnológica 28(4):11. DOI: doi.org/10.4067/S071807642017000400003

Quintana S., Machacon D., Marsiglia R., Torregroza E. and García-Zapateiro L. 2018. Steady and shear dynamic rheological properties of squash (Cucurbita moschata) pulp. Contemporary Engineering Sciences 11(21):1013. DOI: doi.org/10.12988/ces.2018.8386

Rao M. and Tattiyakul J. 1999. Granule size and rheological behavior of heated tapioca starch dispersions. Carbohydr. Polym. 38:123. DOI: doi.org/10.1016/S0144-8617(98)00112-X

Salunkhe D. and Desai B. 1984. Chapter 4. Eggplant: Postharvest Biotechnology of Vegetables. Volume II. Boca Raton, Florida, CRC Press. 39-47.

SanJosé R., Sánchez M., Cámara M. and Prohens J. 2013. Composition of eggplant cultivars of the occidental type and implications for their improvement of nutritional and functional quality. Int. J. Food Sci. Technol. 42:2490. DOI: doi.org/10.1111/ijfs.12240

Steffe J. 1996. Rheological methods in food process engineering. 2nd edition, Michigan. USA: Editorial Freeman Press, East Lansing.

Sun J., Song Y., Zhang J., Huang Z., Huo H., Zheng J., Zhang Q., Zhao Y., Li J. and Tu, P. 2015. Characterization and quantitative analysis of phenylpropanoid amides in eggplant (Solanum melongena L.) by high performance liquid chromatography coupled with diode array detection and hybrid ion trap time-of-flight mass spectrometry. J. Agric. Food Chem. 63:3426.

Toralles R., Vendruscolo J. and Vendruscolo C. 2006. Reológia de purê homogeneizado de Pêssego: Efeito da temperatura e concentração. Braz. J. Food Technol. 9(1):1.

Vidal J., Pelegrine D. and Gasparetto C. 2004. Efeito da temperatura no comportamento reológico da polpa de manga (mangífera indica L. Keitt).Ciênc. Tecnol. Aliment. 24(1):039. DOI: doi.org/10.1590/S010120612004000100008