Main Article Content



autochthonous varieties, grape canes, piceatannol, resveratrol, viniferin


The effect of mixed starter cultures on biogenic amine production was examined during the ripening process of dry camel meat sausage. Changes in pH, moisture content, proteolysis, microbial counts and lipid oxidation were also studied. The combination of three amine-negative bacteria, resulted in a drastic reduction of biogenic amine production. The highest total free amino acid concentration was observed in batches manufactured with mixed starter cultures. The bactericidal properties of L. sakei improved the hygienic quality of sausages by decreasing the number of Enterobacteriaceae. Inoculation of sausages with a mixture of strains, significantly delayed lipid oxidation and enhanced sensory characteristics.

Abstract 221 | pdf Downloads 146


Adrian M. and Jeandet P. 2012. Effects of resveratrol on the ultrastructure of Botrytis cinereaconidia and biological significance in plant/pathogen interactions.Fitoterapia 83:1345-1350.

Alonso-Villaverde V., Voinesco F., Viret O., Spring J.L. and Gindro K. 2011. The effectiveness of stilbenes in resistant Vitaceae: Ultrastructural and biochemical events during Plasmopara viticola infection process. Plant PhysiolBiochem. 49:265-274.

Bavaresco L., Mattivi F., De Rosso M. and Flamini R. 2012. Effects of elicitors, viticultural factors, and enological practices on resveratrol and stilbenes in grapevine and wine. Mini-Rev Med Chem. 12:1366-1381.

Billet K., Houillé B., Besseau S., Mélin C., Oudin A., Papon N., Courdavault V., Clastre M., Giglioli-Guivarc'h N. and Lanoue A. 2018. Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct. Food Chem. 240:1022-1027.

De Bona G.S., Adrian M., Negrel J., Chiltz A., Klinguer A., Poinssot B., Héloir M.C., Angelini E., Vincenzi S. and Bertazzon N. 2019. Dual Mode of Action of Grape Cane Extracts against Botrytis cinerea. J Agric Food Chem. 67:5512-5520.

Devesa-Rey R., Vecino X., Varela-Alende J.L., Barral M.T., Cruz J.M. and Moldes A.B. 2011. Valorization of winery waste vs. the costs of not recycling. Waste Manage. 31:2327-2335.

D’Onofrio C., Cox A., Davies C. and Boss P.K. 2009. Induction of secondary metabolism in grape cell cultures by jasmonates. Funct Plant Biol. 36:323-338.

Ewald P., Delker U. and Winterhalter P. 2017. Quantification of stilbenoids in grapevine canes and grape cluster stems with a focus on long-term storage effects on stilbenoid concentration in grapevine canes. Food Res Int. 100:326-331.

Flamini R., De Rosso M., De Marchi, F.,Dalla Vedova A., Panighel A., Gardiman M., Maoz I. and Bavaresco L. 2013. An innovative approach to grape metabolomics: stilbene profiling by suspect screening analysis. Metabolomics 9:1243-1253.

Fernández-Mar M.I., Mateos R., García-Parrilla M.C., Puertas B. and Cantos-Villar E. 2012. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: a review. Food Chem. 130:797-813.

Gorena T., Saez V., Mardones C., Vergara C., Winterhalter P. and Von Baer D. 2014. Influence of post-pruning storage on stilbenoid levels in Vitis viniferaL. canes. Food Chem. 155:256-263.

Gruau C., Trotel-Aziz P., Villaume S., Rabenoelina F., Clément C., Baillieul F. and Aziz A. 2015. Pseudomonas fluorescensPTA-CT2 Triggres local and systemic immune response against Botrytis cinereain grapevine. Mol Plant Microbe Interact. 28:1117-1129.

Guerrero R.F., Biais B., Richard T., Puertas B., Waffo-Teguo P., Merillon J.-M. and Cantos-Villar E. 2016. Grapevine cane's waste is a source of bioactive stilbenes. Ind Crops Prod. 94:884-892.

Houillé B., Besseau S., Courdavault V., Oudin A., Glévarec G., Delanoue G., Guérin L., Simkin A. J., Papon N., Clastre M., Giglioli-Guivarc’h N. and Lanoue A. 2015. Biosynthetic Origin of E-Resveratrol Accumulation in Grape Canes during Postharvest Storage. J Agric Food Chem. 63:1631-1638.

Jiang L., Jin P., Wang L., Yu X., Wang H. and Zheng Y. 2015. Methyl jasmonate primes defense responses against Botrytis cinerea and reduces disease development in harvested table grapes. Sci Hortic. 192:218-223.

Lambert C., Richard T., Renouf E., Bisson J., Waffo-Teguo P., BordenaveL., Ollat N., Merillon J.-M. and Cluzet, S. 2013. Comparative analyses of stilbenoids in canes of major Vitis viniferaL. cultivars. J Agric Food Chem. 61:11392-11399.

Pezet R., Gindro K., Viret O. and Richter H. 2004. Effects of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis 2:145-148.

Rayne S., Karacabey E. and Mazza G. 2008. Grape cane waste as a source of trans-resveratrol and trans-viniferin: High-value phytochemicals with medicinal and anti-phytopathogenic applications. Ind Crops Prod. 27:335-340.

Schnee S., Viret O. and Gindro K. 2008. Role of stilbenes in the resistance of grapevine to powdery mildew. Physiol Mol Plant Pathol. 72:128-133.

Schnee S., Queiroz E.F., Voinesco F., Marcourt L., Dubuis P.H., Wolfender J.L. and Gindro, K. 2013. Vitis viniferacanes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea. J Agric Food Chem. 61:5459-5467.

Shen T., Wang X.-N. and Lou H.-X. 2009. Natural stilbenes: an overview. 2009. Nat Prod Rep. 26:916-935.

Shrivastava A. and Gupta V.B. 2011. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci. 2:21-25.

Vergara C., von Baer D., Mardones C., Wilkens A., Wernekinck K., Damm A., Macke S., Gorena T. and Winterhalter P. 2012. Stilbene levels in grape cane of different cultivars in southern Chile: determination by HPLC-DAD-MS/MS method. J Agric Food Chem. 60:929-933.

Vincenzi S., Tomasi D., Gaiotti F., LovatL., Giacosa S., Torchio F., Río Segade S. and Rolle L. 2013. Comparative Study of the Resveratrol Content of Twenty-one Italian Red Grape Varieties. S Afr J Enol Vitic. 34:30-35.

Wang W., Tang K., Yang H.-R., Wen P.-F., Zhang P., Wang H.-L. and Huang W.-D. 2010. Distribution of resveratrol and stilbene synthase in young grape plants (Vitis viniferaL. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiol Biochem. 48:142-152.

Yin X., Singer S.D., Qiao H., Liu Y., Jiao C., Wang H., Wang X., Li Z., Fei Z., Wang Y., Fan C. and Wang X. 2016. Insights into the mechanisms underlying Ultraviolet-C induced resveratrol metabolism in grapevine (V. amurensisRupr.) cv. “Tonghua-3”. Front Plant Sci. 7:1-16.

Zhang A., Fang Y., Li X., Meng J., Wang H., Li H., Zhang Z. and Guo Z. 2011. Occurrence and estimation of trans-resveratrol in one-year-old canes from seven major Chinese grape producing regions. Molecules16:2846-2861.