HOMEMADE TOMATO SAUCE IN THE MEDITERRANEAN DIET: A RICH SOURCE OF ANTIOXIDANTS

Main Article Content

A. RICCI
E. ANTONINI
P. NINFALI

Keywords

antioxidant activity, extra virgin olive oil, lycopene, polyphenols, tomato sauces, vegetables and aromatic herbs

Abstract

The basic ingredients used to make the Italian soffritto were studied in order to define the polyphenol, antioxidant capacity and lycopene content of homemade or commercial tomato sauces, as well as their contribute in whole wheat or refined wheat pasta.

The addition of aromatic herbs to sauces increased polyphenols and antioxidant capacity, with basil providing the biggest boost, whereas rea dy-made commercial tomato sauces showed the lowest antioxidant values. Cooked whole wheat pasta with homemade tomato sauce offers an enormous amount of antioxidants, which could protect against oxidative stress.
Abstract 1543 | pdf Downloads 936

References

Agbor G.A., Vinson J.A. and Donnelly P.E. 2014. Folin-Ciocalteau Reagent for Polyphenolic Assay. Int. J. Food Sci. Nutr Diet. 3:147.

Antonini E., Diamantini G. and Ninfali P. 2017. The effect of mechanical processing on avenanthramide and phenol levels in two organically grown Italian oat cultivars. J. Food Sci. Technol. 54:279.

Antonini E., Farina A., Scarpa E.S., Frati A. and Ninfali P. 2016a. Quantity and quality of secoiridoids and lignans in extra virgin olive oils: the effect of two-and three-way decanters on Leccino and Raggiola olive cultivars. Int. J. Food Sci. Nutr. 67:9.

Antonini E., Lombardi F., Alfieri M., Diamantini G., Redaelli R. and Ninfali P. 2016b. Nutritional characterization of naked and dehulled oat cultivar samples at harvest and after storage. J. Cereal Sci. 72:46.

Bertuccioli A. and Ninfali P. 2014. The Mediterranean Diet in the era of globalization: The need to support knowledge of healthy dietary factors in the new socio-economical framework. Med. J. Nutr. Metab. 7:75.

Bystrická J., Musilová J., Vollmannová A., Timoracká M. and Kavalcová P. 2013. Bioactive components of onion (Allium cepa L.) -a Review. Acta Aliment. 42:11.

Cano A., Acosta M. and Arnao M.B. 2003. Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biol. Technol. 28:59.

Casal S., Malheiro R., Sendas A., Oliveira B.P.P. and Pereira J.A. 2010. Olive oil stability under deep-frying conditions. Food Chem. Toxicol. 48:2972.

Cooperstone J.L., Ralston R.A., Riedl K.M., Haufe T.C., Schweiggert R.M., King S.A., Timmers C.D., Francis D.M., Lesinski G.B., Clinton S.K. and Schwartz S.J. 2015. Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial. Mol. Nutr. Food Res. 59:658.

Davis A.R., Fish W.W. and Perkins-Veazie P. 2003. A rapid spectrophotometric method for analyzing lycopene content in tomato and tomato products. Postharvest Biol. Technol. 28:425.

Dragsted L.O. 2003. Antioxidant actions of polyphenols in humans. Int. J. Vitam. Nutr. Res. 73:112.

Frati A., Antonini E. and Ninfali P. 2016. Industrial freezing, cooking, and storage differently affect antioxidant nutrients in vegetables. Ch. 2. In "Fruits, Vegetables, and Herbs". R.R. Watson and V. R. Preedy (Ed.), p. 23. Academic Press, Oxford.

Ghasemzadeh A., Ashkani S., Baghdadi A., Pazoki A., Jaafar H.Z. and Rahmat A. 2016. Improvement in Flavonoids and Phenolic Acids Production and Pharmaceutical Quality of Sweet Basil (Ocimum basilicum L.) by Ultraviolet-B Irradiation. Molecules 21: 1203.

Ghiselli A., Serafini M., Natella F. and Scaccini C. 2000. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radic. Biol. Med. 29:1106.

Gómez R., Costa J., Amo M., Alvarruiz A., Picazo M. and Pardo J. 2001. Physicochemical and colorimetric evaluation of local varieties of tomato grown in SE Spain. J. Sci. Food Agric. 81:1101.

Guine R.P. and Goncalves F.J. 2016. Bioactive Compounds in Some Culinary Aromatic Herbs and Their Effects on Human Health. Mini-Rev. Med. Chem. 16:855.

Hoffman R. and Gerber M. 2015. Food Processing and the Mediterranean Diet. Nutrients. 7:7925.

Lee S.J., Umano K., Shibamoto T. and Lee K.G. 2005. Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 91:131.

Lemmens L., Colle I.J.P., Van Buggenhout S., Van Loey A.M. and Hendrickx M.E. 2011. Quantifying the Influence of Thermal Process Parameters on in Vitro ?-Carotene Bioaccessibility: A Case Study on Carrots. J. Agric. Food Chem. 59:3162.

Liu R.H. 2007. Whole grain phytochemicals and health. J. Cereal Sci. 46:207.

Martí R., Roselló S. and Cebolla-Cornejo J. 2016. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. Cancers. 8:58.

Martins N., Petropoulos S. and Ferreira I.C.F.R. 2016. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre-and post-harvest conditions: A review. Food Chem. 211:41.

Nicoli M.C., Anese M. and Manzocco L. 1999. Oil stability and antioxidant properties of an oil tomato food system as affected by processing. Adv. Food Sci. 21:10.

Ninfali P. and Bacchiocca M. 2004. Parameters for the detection of post-harvest quality in fresh or transformed horticultural crops. Food Agric. Environ. 2:122.

Ninfali P., Mea G., Giorgini S., Rocchi M. and Bacchiocca M. 2005. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br. J. Nutr. 93:257.

Ninfali P., Bacchiocca M., Biagiotti E., Servili M. and Montedoro G. 2002. Validation of the oxygen radical absorbance capacity (ORAC) parameter as a new index of quality and stability of virgin olive oil. J. Am. Oil Chem. Soc. 79:977.

Ou B., Chang T., Huang D. and Prior R.L. 2013. Determination of total antioxidant capacity by oxygen radical absorbance capacity (ORAC) using fluorescein as the fluorescence probe: First Action 2012.23. J. AOAC Int. 96:1372.

Ovodova R.G., Golovchenko V.V., Popov S.V., Popova G.Y., Paderin N.M., Shashkov A.S. and Ovodov Y.S. 2009. Chemical composition and anti-inflammatory activity of pectic polysaccharide isolated from celery stalks. Food Chem. 114:610.

Panato A., Antonini E., Bortolotti F. and Ninfali P. 2017. The histology of grain caryopses for nutrient location: a comparative study of six cereals. Int. J. Food Sci. Technol. 52:1238.

Periago M.J., Rincon F., Aguera M.D. and Ros G. 2004. Mixture approach for optimizing lycopene extraction from tomato and tomato products. J. Agric. Food Chem. 52:5796.

Prior R.L., Gu L., Wu X., Jacob R.A., Sotoudeh G., Kader A.A. and Cook R.A. 2007. Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J. Am. Coll. Nutr. 26:170.

Prior R.L., Hoang H., Gu L., Wu X., Bacchiocca M., Howard L., Hampsch-Woodill M., Huang D., Ou B. and Jacob R. 2003. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL))) of plasma and other biological and food samples. J. Agric. Food Chem. 51:3273.

Raffo A., Leonardi C., Fogliano V., Ambrosino P., Salucci M., Gennaro L., Bugianesi R., Giuffrida F. and Quaglia G. 2002. Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 50:6550.

Santos C.S.P., Cruz R., Cunha S.C. and Casal S. 2013. Effect of cooking on olive oil quality attributes. Food Res. Int. 54:2016.

Seljåsen R., Kristensen H.L., Lauridsen C., Wyss G.S., Kretzschmar U., Birlouez-Aragone I.s. and Kahl J. 2013. Quality of carrots as affected by pre-and postharvest factors and processing. J. Sci. Food Agric. 93:2611.

Shen Y.C., Chen S.L. and Wang C.K. 2007. Contribution of tomato phenolics to antioxidation and down-regulation of blood lipids. J. Agric. Food Chem. 55:6475.

Singleton V.L., Orthofer R. and Lamuela-Raventos R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Oxid. Antioxid., Pt A 299:152.

Teixeira B., Marques A., Ramos C., Serrano C., Matos O., Neng N.R., Nogueira J.M., Saraiva J.A. and Nunes M.L. 2013. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. J. Sci. Food Agric. 93:2707.

Vallverdú-Queralt A., de Alvarenga J.F., Estruch R. and Lamuela-Raventos R.M. 2013. Bioactive compounds present in the Mediterranean sofrito. Food Chem. 141:3365.

Vallverdú-Queralt A., Medina-Remón A., Casals-Ribes I., Andres-Lacueva C., Waterhouse A. and Lamuela-Raventos R. 2012. Effect of tomato industrial processing on phenolic profile and hydrophilic antioxidant capacity. LWT -Food Sci. Technol. 47:154.

Valussi M. 2012. Functional foods with digestion-enhancing properties. Int. J. Food Sci. Nutr. 63 Suppl 1:82.

Wu X., Beecher G.R., Holden J.M., Haytowitz D.B., Gebhardt S.E. and Prior R.L. 2004. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 52:4026.

Yao Y. and Ren G. 2011. Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. LWT -Food Sci. Technol. 44:181.

Zanfini A., Franchi G.G., Massarelli P., Corbini G. and Dreassi E. 2016. Phenolic compounds, carotenoids and antioxidant activity in five tomato (Lycopesicon esculentum Mill.) cultivars. Ital. J. Food Sci. 29:424.