NUTRACEUTICAL VALUE OF EDIBLE FLOWERS UPON COLD STORAGE
Main Article Content
Keywords
ascorbic acid, anthocyanins, brightness, edible flowers, nutraceutical value, phenolics.
Abstract
The attraction and quality of edible flowers correlates with their high perishability. Few studies have evaluated whether edible flowers decay faster than they lose their nutraceutical value. In this experiment, ascorbic acid was negatively affected by cold storage in all the edible flowers investigated, whereas phenolic, flavonoid, and anthocyanin content were affected only in some cases. No decrease in total antioxidant activity was detected in any of the edible flowers at the end of their shelf life. Our dataset highlights that (i) the selection of edible flowers with low moisture content is key in ensuring a longer shelf life, and (ii) more effort should focus on preventing water loss in edible flowers.
References
Castrejón A.D.R., Eichholz I., Rohn S., Kroh L.W. and Huyskens-Keil S. 2008. Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem. 109: 564.
Das B.K., Choudhury B.K. and Kar M. 2010. Quantitative estimation of changes in biochemical constituents of mahua (Madhuca indica syn. Bassia latifolia) flowers during postharvest storage. Journal of Food Processing and Preservation 34:831-844.
Dewanto V., Adom K.K. and Liu R.H. 2002. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50:3010.
Du G., Li M., Ma F. and Liang D. 2009. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem. 113:557.
Friedman H., Rot I., Agami O., Vinokur Y., Rodov V., Reznick N., Umiel N., Dori I., Ganot L., Shmuel D. and Matan E. 2007. Edible flowers: new crops with potential health benefits. Acta Hortic. 755:283.
Fu M. and Mao L. 2008. In vitro antioxidant activities of five cultivars of daylily flowers from China. Nat. Prod. Res. 22:584.
Garzon G.A. and Wrolstad R.E. 2009. Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus). J. Agric. Food Chem. 114:44.
Garzon G.A. and Wrolstad R.E. 2009. Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus). J. Agric. Food Chem. 114:44.
Giovannelli G. and Buratti S. 2009. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem. 112:903.
Kader A.A. and Saltveit M.E. 2003. Respiration and gas exchanges. In “Postharvest Physiology and Pathology of Vegetables”. J.A. Bartz and J.K. Brecht (Ed), p. 7. CRC Press, Boca Raton, FL.
Kahkonen M.P., Hopia A.I., Vuorela H.J., Rauha J.P., Pihlaja K., Kujala T.S., Heinonen M. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47:3954.
Kaisoon O., Siriamorpun S., Weerapreeyakul N. and Meeso N. 2011. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Functs Foods 3:88.
Kampfenkel K., Van Montagu M. and Inzé, D. 1995. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 225:165.
Kaur C. and Kapoor H.C. 2002. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol. 37:153.
Kazaz S., Erbas S., Baydar H., Dilmacunal T. and Koyuncu M.A. 2010. Cold storage of oil rose (Rosa damascene Mill.) flowers. Sci. Hortic. 126:284.
Kelley K.M., Cameron A.C., Biernbaum J.A. and Poff K.L. 2003. Effect of storage temperature on the quality of edible flowers. Postharvest Biol. Technol. 27:341.
Kim H.Y., Chen F., Wang Z. and Rajapakse N. 2005. Effect of chitosan on the biological properties of sweet basil. J. Agric. Food Chem. 53:3696.
Kou L., Turner E.R. and Luo Y. 2012. Extending the shelf life of edible flowers with controlled release of 1-methylcyclopropene and modified atmosphere packaging. J. Food Sci.77:188.
Landi M., Fambrini M., Basile A., Salvini M., Guidi L. and Pugliesi C. 2015c. Overexpression of L-galactono-1,4-lactone dehydrogenase (L-GalLDH) gene correlates with increased ascorbate concentration and reduced browning in leaves of Lactuca sativaL. after cutting. Plant Cell Tiss Org. 123:109.
Landi M., Guidi L., Pardossi A., Tattini M. and Gould K.S. 2014. Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum). Planta 240:941.
Landi M., Massai R., Remorini D. 2015b. Effect of rootstock and manual floral bud thinning on organoleptical and nutraceutical properties of sweet cherry (Prunus avium L.) cv ‘Lapins’. Agrochimica 58:335-351.
Landi M., Ruffoni B., Salvi D., Savona M. and Guidi L. 2015a. Cold storage does not affect ascorbic acid and polyphenolic content of edible flowers of a new hybrid of sage. Agrochimica 59:348.
Li A.N., Li S., Li H.B., Xu D.P., Xu X.R. and Chen F. 2014. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 6: 319.
Li C., Du H., Wang L., Shu Q., Zheng Y., Xu Y., Zhang J., Zhang J., Yang R. and Ge Y. 2009. Flavonoid composition and antioxidant activity of tree peony (Peonia section moutan) yellow flowers. J. Agric. Food Chem. 57:8496-8503.
Loizzo R.M., Pugliese A., Bonesi M., Tenuta M.C., Menichini F., Xiao J. and Tundis R. 2015. Edible flowers: a rich source of phytochemicals with antioxidant and hypoglicemic properties. Journal of Agricultural and Food Chemistry, in press, DOI: 10.1021/acs.jafc.5b03092.
Martin-Diana A.B., Rico D., Barry-Ryan C., Frias J.M., Mulcahy J. and Henehan G.T.M. 2015. Calcium lactate washing treatments for salad-cut Iceberg lettuce: effect of temperature and concentration on quality retention parameters. Food Research International, 38:729-740.
Mlcek J. and Rop O. 2011. Fresh edible flowers of ornamental plants. A new source of nutraceutical foods. Trends Food Sci Technol. 22:561.
Navarro-Gonzalez I., Gonzalez-Barrio R., Garcia-Valverde V., Bautista-Ortin A.B. and Jesus Periago M. 2015. Nutritional composition and antioxidant capacity in edible flowers: characterization of phenolic compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 16:805.
Remorini D., Landi M., Tardelli F., Lugani A., Graziani D., Fogliano V. and Guidi L. 2015. Effect of chlorine dioxide and ascorbic acid on enzymatic browning and shelf life of fresh-cut Red Delicious and Granny Smith apples. J. Food Proc. Preserv. 39:2925.
Rop O., Mlcek J., Jurikova T., Neugebauerova J. and Vabkova J. 2012. Edible flowers –a new promising source of mineral elements in human nutrition. Molecules 176672.
Salem N., Msaada K., Hamdaoui G., Limam F. and Marzouk B. 2011. Variation in phenolic composition and antioxidant activity during flower development of safflower (Carthamus tinctorius L.). J. Agric. Food Chem. 59:4455-4463.
Sotelo, A., Lopez-Garcia, S. and Basurto-Pe F. 2007. Content of nutrient in edible flowers of wild plants in Mexico. Plant Food Human Nutr. 62:133.
Tai Z., Cai L., Dai L., Dong L., Wang M., Yang Y., Cao Q. and Ding Z. 2011. Antioxidant activity and chemical constituents of edible flower of Sophora viciifolia. Food Chem. 126:1648.
Villalta A.M., Ergun M., Berry A.D., Shaw N. and Sargent S.A. 2004. Quality changes of yellow summer squash blossom (Cucurbita pepo) during storage. Acta Hortic. 659831.
Wongwattanasathien O., Kangsadalampai K. and Tongyonk L. 2010. Antimutagenicity of some flowers grown in Thailand. Food Chem. Toxicol. 48:1045.