Ultrasound Assisted Extraction of Lycopene and ?–carotene from Tomato Processing Wastes

Main Article Content

T. Yilmaz
S. Kumcuoglu
S. Tavman

Keywords

HPLC analysis, lycopene and β-carotene, lycopene stability, ultrasound assisted extraction, tomato processing wastes

Abstract

Tomato processing wastes are important source for carotenoids such as lycopene and ?-carotene. In this study, ultrasonic assisted extraction (UAE) of lycopene and ?-carotene from tomato processing wastes were investigated.

UAE was more effective and required shorter time than COSE even at low processing temperatures. Maximum lycopene yield was obtained using at 90 W ultrasonic power at 30 min extraction while maximum ?-carotene was recovered by 90 W ultrasonic power at 15 min.

HPLC analysis of both lycopene and ?-carotene were applied after 6 months storage and it was observed that there was 35±10% loss for lycopene during cold storage.

Abstract 1882 | PDF Downloads 1279

References

Adekunte A. O, Tiwari B.K., Cullen P.J., Scannell A. G.M., O’Donnell CP .2010. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 122:500–507.

Alda L.M., Gogoa I., Bordean D., Gergen I., Alda S., Moldovan C., et al. 2009 . Lycopene content of tomatoes and tomato products. J. Agroaliment. Process Technol. 15:540–542.

Arab L., Steck S. 2000. Lycopene and cardiovascular disease. Am. J. Clin. Nutr. 71:1691–1695.

Arias R., Lee T.C., Logendra L., Janes H. 2000 . Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agric. Food Chem. 48:1697–1702.

Bakó E., Deli J., Tóth G. 2002. HPLC study on the carotenoid composition of Calendula products. J. Biochem. Biophys. Methods 53:241–250.

Barba A.I.O., Ferna V.2006. Food Chemistry Application of a UV – vis detection-HPLC method for a rapid determination of lycopene and b -carotene in vegetables. Food Chem. 95:328–336.

Baysal T., Ersus S., Starmans D. A. J.2000. Supercritical CO2 extraction of ?-carotene and lycopene from tomato paste waste. J. Agric. Food Chem. 48:5507–5511.

Ben-Amotz A., Fishler R.1998. Analysis of carotenoids with emphasis on 9-cis-carotene in vegetables and fruits commonly consumed in Israel. Food Chem. 62:515–520.

Bravo S., García-Alonso J., Martín-Pozuelo G., Gómez V., Santaella M., Navarro-González I., et al. 2012. The influence of post-harvest UV-C hormesis on lycopene, ?-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Res. Int. 49:296–302.

Capanoglu E., Beekwilder J., Boyacioglu D., Hall R., De Vos R. 2008. Changes in antioxidant and metabolite profiles during production of tomato paste. J. Agric. Food Chem. 56: 964–973.
Chen J., Shi J., Xue S.J., Ma Y. 2009. Comparison of lycopene stability in water- and oil-based food model systems under thermal- and light-irradiation treatments. LWT - Food Sci. Technol. 42:740–747.

Cucu T., Huvaere K., Van Den Bergh M-A., Vinkx C., Van Loco J. 2012. A Simple and Fast HPLC Method to Determine Lycopene in Foods. Food Anal. Methods 5:1221–1228.

Dolatabadi Z., Elhami Rad A.H., Farzaneh V., Akhlaghi Feizabad S.H., Estiri S.H., Bakhshabadi H.2016. Modeling of the lycopene extraction from tomato pulps. Food Chem. 190:968–973.

Eh A.L.S., Teoh S.G. 2012. Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrason. Sonochem. 19:151–159.

Fantin G., Fogagnolo M., Medici A., Perrone D. 2007. Isolation of lycopene from crude tomato extract via selective inclusion in deoxycholic acid. Tetrahedron Lett. 48:9148–9150.

George B., Kaur C., Khurdiya D.S., Kapoor H.C. 2004. Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chem. 84:45–51.

Hakala S.H., Heinonen I.M. 1994. Chromatographic purification of natural lycopene. J. Agric. Food Chem. 42:1314–1316.

Ho K.K.H.Y., Ferruzzi M.G., Liceaga A.M., San Martín-González M.F. 2015. Microwave-assisted extraction of lycopene in tomato peels: effect of extraction conditions on all-trans and cis-isomer yields. LWT - Food Sci. Technol. 62:160–168.

Jerman T., Trebše P., Mozeti? Vodopivec B. 2010. Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chem. 123:175–182.

Karakaya S. (2007). Lycopene content and antioxidant activity of fresh and processed tomatoes and in vitro bioavailability of lycopene. J. Sci. Food Agr. 2347:2342–2347.

Katherine L.S.V., Edgar C.C., Jerry W.K., Luke R.H., Julie C.D. 2008. Extraction conditions affecting supercritical fluid extraction (SFE) of lycopene from watermelon. Bioresour. Technol. 99:7835–41.

Kaur D, Wani A.A., Oberoi D.P.S., Sogi D.S. 2008. Effect of extraction conditions on lycopene extractions from tomato processing waste skin using response surface methodology. Food Chem. 108:711–718.

Kumcuoglu S, Yilmaz T, Tavman S (2014). Ultrasound assisted extraction of lycopene from tomato processing wastes. J. Food Sci. Technol. 51:4102–4107.

Lavelli V., Torresani M.C. 2011. Modelling the stability of lycopene-rich by-products of tomato processing. Food Chem. 125:529–535.

Lianfu Z., Zelong L. 2008. Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason. Sonochem. 15:731–737.

Lugasi A., Bíró L., Hóvárie J., Sági K. V., Brandt S., Barna É. 2003. Lycopene content of foods and lycopene intake in two groups of the Hungarian population. Nutr. Res. 23:1035–1044.

Mason T.J., Lorimer J.P. 2002. Timothy J . Mason and John P . Lorimer Applied Sonochemistry The Uses of Power Ultrasound in Chemistry and Processing. Wiley-VCH, Weinheim

Olives Barba A.I., Cámara Hurtado M., Sánchez Mata M.C., Fernández Ruiz V., López Sáenz De Tejada M. 2006. Application of a UV-vis detection-HPLC method for a rapid determination of lycopene and ?-carotene in vegetables. Food Chem. 95:328–336.

Perkins-Veazie P., Collins J.K., Pair S.D., Roberts W. 2001. Lycopene content differs among red-fleshed watermelon cultivars. J. Sci. Food Agric. 81:983–987.

Poojary M.M., Passamonti P. 2015a. Extraction of lycopene from tomato processing waste: Kinetics and modelling. Food Chem. 173:943–950.
Poojary M.M., Passamonti P. 2015b. Optimization of extraction of high purity all-trans-lycopene from tomato pulp waste. Food Chem. 188:84–91.

Rao A. V., Agarwal S. 1999. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutr. Res. 19:305–323.

Rao A.V., Waseem Z., Agarwal S. 1998. Lycopene content of tomatoes and tomato products and their contribution to dietary lycopene. Food Res. Int. 31:737–741.

Sabio E., Lozano M., Montero de Espinosa V., Mendes R.L., Pereira A. P, Palavra A. F., et al. 2003. Lycopene and ?-Carotene Extraction from Tomato Processing Waste Using Supercritical CO 2. Ind. Eng. Chem. Res. 42:6641–6646.

Sadler G., Davis J., Dezman D. 1990. Rapid Extraction of Lycopene and ?-Carotene from Reconstituted Tomato Paste and Pink Grapefruit Homogenates. J. Food Sci. 55:1460–1461.

Shi J., Maguer M Le., Kakuda Y., Liptay A., Niekamp F. 1999. Lycopene degradation and isomerization in tomato dehydration. Food Res. Int. 32:15–21.

Soria AC, Villamiel M (2010). Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci. Technol. 21:323–331.

Stahl W., Sies H. 2005. Bioactivity and protective effects of natural carotenoids. Biochim. Biophys. Acta - Mol. Basis Dis. 1740:101–107.

Su Q., Rowley K.G., Balazs N.D.H. 2002. Carotenoids: separation methods applicable to biological samples. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 781:393–418.

Sun Y., Liu D., Chen J., Ye X., Yu D . 2011. Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-?-carotene from citrus peels. Ultrason. Sonochem. 18:243–9.

Sun Y., Ma G., Ye X., Kakuda Y., Meng R. 2010. Stability of all-trans-beta-carotene under ultrasound treatment in a model system: effects of different factors, kinetics and newly formed compounds. Ultrason. Sonochem. 17:654–61.

Sutkar V.S., Gogate P.R., Csoka L. 2010. Theoretical prediction of cavitational activity distribution in sonochemical reactors. Chem. Eng. J. 158:290–295.

Taylor P., Shi J., Maguer M Le. 2000. Lycopene in Tomatoes?: Chemical and Physical Properties Affected by Food Processing.
Toma M., Vinatoru M., Paniwnyk L., Mason T.J. 2001. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 8:137–142.

Tonucci L.H., Holden J.M., Beecher G.R., Khachik F., Davis C.S., Mulokozi G. 1995. Carotenoid Content of Thermally Processed Tomato-Based Food Products. J. Agric. Food Chem. 43:579–586.

Toor R.K., Savage G.P. 2005. Antioxidant activity in different fractions of tomatoes. Food Res. Int. 38:487–494.

Vinatoru M. 2001. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 8:303–313.

Wang J., Sun B., Cao Y., Tian Y., Li X. 2008. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 106:804–810.

Wang L., Weller C.L. 2006. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17:300–312.

Xu Y., Pan S. 2013. Effects of various factors of ultrasonic treatment on the extraction yield of all-trans-lycopene from red grapefruit (Citrus paradise Macf.). Ultrason. Sonochem. 20:1026–1032.