Wild cherry Prunus microcarpa: its phytochemical, antioxidant, enzyme inhibitory, anti-inflammatory, and acute toxicity approaches
Main Article Content
Keywords
Prunus Microcarpa, phytochemical, antioxidant, enzyme inhibitory, acute toxicity
Abstract
Therapeutic plants are potentially a great renewable biomolecule source with fewer downsides than synthetic chemicals. Prunus microcarpa Boiss. is a wild fruity plant prepared by hydro-distillation and consumed as a traditional remedy for many health defects. The study investigates the phytoconstituents, antioxidant, anti-inflammatory, and acute toxicity effects of methanolic extracts of P. microcarpa fruits and stems plus pedicles (MEPMF and MEPMSP). The total phenolics, flavonoids, anthocyanins, and tannins were spectrophotometrically estimated. The enzyme inhibitory action (against α-amylase and α-glucosidase), antioxidant potentials (using five different assays), and anti-inflammatory potentials (using the egg albumin denaturation procedure) were determined. Phytochemical profiling revealed increased total phenolics (76.34 and 121.45 mg gallic acid equivalent/g extract), flavonoids (210.30 and 18.93 mg GAE/g extract), anthocyanin (176.23 and 149.34 mg cyanidin 3-glucoside equivalent/g extract), and tannins (112.39 and 64.87 mg GAE/g extract) in MEPMF and MEPMSP, respectively. MEPMF had higher antioxidant potentials (130.83 and 117.12 mg TEs/g–1 extract in ABTS and DPPH assays, respectively) and higher reducing power actions (413.40, 141.23, and 97.62 mg TEs/g–1 extract in phospho-molybdenum, CUPRAC, and FRAP assays, respectively) than that of MEPMSP. MEPMF showed better inhibitory actions against α-amylase (IC50; 6.70 mg/mL), α-glucosidase (IC50; 5.72 mg/mL), and protein denaturation (IC50; 53.78 mg/mL) than that (IC50; 7.53, 6.28, and 84.42 mg/mL, respectively) of MEPMSP. According to biochemical evaluation, both extracts (2 and 5 g/kg) showed nontoxic effects in a two-week animal trial. In this first detailed record on P. microcarpa, the species exhibited numerous biological potentials attributed to its rich phytoconstituents, which also backed up its ethnomedicinal use.
References
Ademović Z., Hodžić S., Halilić-Zahirović Z., Husejnagić D., Džananović J., Šarić-Kundalić B. et al. 2017. Phenolic compounds, antioxidant and antimicrobial properties of the wild cherry (Prunus avium L.) stem. Acta Period. Technol. (48):1–13. https://doi.org/10.2298/APT1748001A
Ahmed H.M. 2016. Ethnopharmacobotanical study on the medicinal plants used by herbalists in Sulaymaniyah Province, Kurdistan, Iraq. J. Ethnobiol. Ethnomed. 12(1):8. https://doi.org/10.1186/s13002-016-0081-3
Achili, I., Amrani, A., Bensouici, C., Gül, F., Altun, M., Demirtas, I., Zama, D., et al. (2020) Chemical constituents, antioxidant, anticholinesterase and antiproliferative effects of Algerian Pistacia atlantica Desf. extracts, Recent Pat. Food. Nutr. Agric. 11: 249–256. . https://doi.org/10.2174/2212798411666200207101502
A. Asiri, S., Matar, A., Mahmoud Ismail, A. and Farag, H.A.S. (2024) Sodium alginate edible films incorporating cactus pear extract: antimicrobial, chemical, and mechanical properties, Ital. J. Food Sci. 36: 151–168. https://doi.org/10.15586/ijfs.v36i4.2675.
Aliyazicioglu R., Yildiz O., Sahin H., Eyupoglu O.E., Ozkan M.T., Karaoglu S.A., et al. 2015. Phenolic components and antioxidant activity of Prunus spinosa from Gumushane, Turkey. Chem. Nat. Compd. 51(2):346–349. https://doi.org/10.1007/s10600-015-1278-8
Amir M., Zafar A., Ahmad R., Ahmad W., Sarafroz M., Khalid M., et al. 2022. Quality control standardization, contaminant detection and in vitro antioxidant activity of Prunus domestica Linn. Fruit. Plants (Basel, Switzerland). 11(5). https://doi.org/10.3390/plants11050706
Alelign, T., Chalchisa, D., Fekadu, N., Solomon, D., Sisay, T., Debella, A. and Petros, B. (2020) Evaluation of acute and sub-acute toxicity of selected traditional antiurolithiatic medicinal plant extracts in Wistar albino rats, Toxicol. Reports 7(2020): 1356–1365. https://doi.org/https://doi.org/10.1016/j.toxrep.2020.10.001.
Atanasov A.G., Zotchev S.B., Dirsch V.M. and Supuran C.T. 2021. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20(3):200–216. https://doi.org/10.1038/s41573-020-00114-z
Beddiar H., Boudiba S., Benahmed M., Tamfu A.N., Ceylan Ö., Hanini K., et al. 2021. Chemical composition, anti-quorum sensing, enzyme inhibitory, and antioxidant properties of phenolic extracts of Clinopodium nepeta L. Kuntze. Plants. https://doi.org/10(9):1955.10.3390/plants10091955
Bento C., Gonçalves A.C., Silva B. and Silva L.R. 2018. Assessing the phenolic profile, antioxidant, antidiabetic and protective effects against oxidative damage in human erythrocytes of peaches from Fundão, J. Funct. Foods. 43(2018):43224–233. https://doi.org/10.1016/j.jff.2018.02.018
Bento C., Goncalves A.C., Silva B. and Silva L.R. 2022. Peach (Prunus persica): phytochemicals and health benefits. Food Rev. Int. 38(8):1703–1734. https://doi.org/10.1080/87559129.2020.1837861
Bibi Sadeer N., Montesano D., Albrizio S., Zengin G. and Mahomoodally M.F. 2020. The versatility of antioxidant assays in food science and safety-chemistry. Applications, Strengths, and Limitations, Antioxidants (Basel, Switzerland). 9(8): https://doi.org/10.3390/antiox9080709
Bouqoufi A., Lahlou L., Ait El Hadj F., Abdessadek M., Obtel M. and Khabbal Y. 2023. Prevalence, motivation, and associated factors of medicinal herbs consumption in pregnant women from Eastern Mediterranean Regional Office: a systematic review. Pharm. Biol. 61(1):1065–1081. https://doi.org/10.1080/13880209.2023.2229388
Canistro D., Boccia C., Falconi R., Bonamassa B., Valgimigli L., Vivarelli F., et al. 2015. Redox-based flagging of the global network of oxidative stress greatly promotes longevity. J. Gerontol. Ser. A. 70(8):936–943. https://doi.org/10.1093/gerona/glu160
Canistro D., Vivarelli F., Cirillo S., Costa G., Andreotti C. and Paolini M. 2016. Comparison between in toto peach (Prunus persica L. Batsch) supplementation and its polyphenolic extract on rat liver xenobiotic metabolizing enzymes. Food Chem. Toxicol. 97(2016):97385–394. https://doi.org/10.1016/j.fct.2016.10.006
Çevik N., Kizilkaya B. and Türker G. 2012. The condensed tannin content of fresh fruits cultivated in Ida mountains, Çanakkale, Turkey. New Knowl. J. Sci. 2(2012):249–51.
David B., Wolfender J.-L. and Dias D.A. 2015. The pharmaceutical industry and natural products: historical status and new trends. Phytochem. Rev. 14 (2015):14299–315. https://doi.org/10.1007/s11101-014-9367-z
Dhingra N., Sharma R. and Kar A. 2014. Evaluation of the antioxidant activities of Prunus domestica whole fruit: an in vitro study. Int. J. Pharm. Pharm. Sci. 6(4):271–276.
Donno D., Mellano M.G., De Biaggi M., Riondato I., Rakotoniaina E.N. and Beccaro G.L. 2018. New findings in Prunus padus L. fruits as a source of natural compounds: characterization of metabolite profiles and preliminary evaluation of antioxidant activity. Molecules. 23(4):725. https://doi.org/10.3390/molecules23040725
El-Beltagi H.S., El-Ansary A.E., Mostafa M.A., Kamel T.A. and Safwat G. 2019. Evaluation of the phytochemical, antioxidant, antibacterial and anticancer activity of Prunus domestica fruit. Not. Bot. Horti Agrobot. Cluj-Napoca. 47(2):395–404.
Elhouda-Mekhadmi N., Mlik R., Abid A., Adaika A., Bentahar A., Ben Amour S., et al. 2024. Anacyclus pyrethrum extracts: examination of bioactive compounds and therapeutic implications through in vivo, in vitro, and in silico assays. Ital. J. Food Sci. 36(3 SE-Original Article):80–94. https://doi.org/10.15586/ijfs.v36i3.2627
Erenler R., Yaman C. and Hakki Alma M. 2023. Phytochemical investigation of hypericum heterophyllum flowers: LC-ESI-MS/MS analysis, total phenolic and flavonoid contents, antioxidant activity. Nat. Prod. J. 13(7):37–45. https://doi.org/10.2174/2210315513666230112165545
Fadda A. and Mulas M. 2010. Chemical changes during myrtle (Myrtus communis L.) fruit development and ripening. Sci. Hortic. (Amsterdam). 125(3):477–485. https://doi.org/10.1016/j.scienta.2010.03.024
Filaferro M., Codeluppi A., Brighenti V., Cimurri F., González-Paramás A.M., Santos-Buelga, et al. 2022. Disclosing the antioxidant and neuroprotective activity of an anthocyanin-rich extract from sweet cherry (Prunus avium L.) using in vitro and in vivo models. Antioxidants (Basel, Switzerland). 11(2):211. https://doi.org/10.3390/antiox11020211
Fu H., Mu X., Wang P., Zhang J., Fu B. and Du J. 2020. Fruit quality and antioxidant potential of Prunus humilis Bunge accessions. PLoS One. 15(12):e0244445. https://doi.org/10.1371/journal.pone.0244445
Gomathi R., Umamaheswari T.N. and Prethipa R. 2024. Evaluation of antioxidant, anti-inflammatory, and antimicrobial activities of raspberry fruit extract: an in vitro study. Cureus. 16(2):e54045. https://doi.org/10.7759/cureus.54045
Gonçalves A.C., Bento C., Silva B.M. and Silva L.R. 2017. Sweet cherries from Fundão possess antidiabetic potential and protect human erythrocytes against oxidative damage. Food Res. Int. 95(2017): 9591–100. https://doi.org/10.1016/j.foodres.2017.02.023
Guest E. and Townsend C.C. 1966. Flora of Iraq. Published by Ministry of Agriculture, Baghdad, Iraq. 2: 153–171.
Hagos M., Chandravanshi B.S., Redi-Abshiro M. and Yaya E.E. 2023. Determination of total phenolic, total flavonoid, ascorbic acid contents and antioxidant activity of pumpkin flesh, peel and seeds. Bull. Chem. Soc. Ethiop. 37(5):1093–1108. https://doi.org/10.4314/bcse.v37i5.3
Hamrouni H., Othman K. Ben, Benmoussa H., Idoudi S., Najjaa H., Neffati M. and Elfalleh W. 2023. The correlations found between the bioactivity of comfrey samples and their phytochemical composition are particularly worth mentioning, as they can indicate some of the biologically relevant molecules. Chem. Biodivers. 20(8):e202300265. https://doi.org/10.1002/cbdv.2023002652
Huang M., Lu J.-J. and Ding J. 2021. Natural products in cancer therapy: past, present and future. Nat. Products Bioprospect. 11(1):5–13.
Jakubczyk K., Tuchowska A. and Janda-Milczarek K. 2021. Plant hydrolates –antioxidant properties, chemical composition and potential applications. Biomed. Pharmacother. 142112033. https://doi.org/10.1016/j.biopha.2021.112033
Jabbar, A.A. (2021) Onosma mutabilis: Phytochemical composition, antioxidant, cytotoxicity, and acute oral toxicity, Food Sci. Nutr. 9(10): 5755–5764. https://doi.org/10.1002/fsn3.2544.
Kang H., Kwak T.-K., Kim B.-G. and Lee K.-J. 2015. The anti-inflammatory effect of Prunus yedoensis bark extract on adipose tissue in diet-induced obese mice. Evidence-based complement. Altern. Med. 2015(1):937904. https://doi.org/10.1155/2015/937904
Karabegović I.T., Stojičević S.S., Veličković D.T., Todorović Z.B., Nikolić N.Č. and Lazić, M.L. 2014. The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Ind. Crops Prod. 54142–148. https://doi.org/10.1016/j.indcrop.2013.12.047
Karakas N., Okur M.E., Ozturk I., Ayla S., Karadag, A.E. and Polat D.Ç. 2019. Antioxidant activity of blackthorn (Prunus spinosa L.) fruit extract and cytotoxic effects on various cancer cell lines. Medeni. Med. J. 34(3):297–304. https://doi.org/10.5222/MMJ.2019.87864
Karani L.W., Tolo F.M., Karanja S.M. and Khayeka C. 2013. Safety of Prunus africana and Warburgia ugandensis in asthma treatment. South African J. Bot. 88(2013):88183–190. https://doi.org/10.1016/j.sajb.2013.07.007
Kashyap P., Riar C.S. and Jindal N. 2021. Optimization of ultrasound assisted extraction of polyphenols from Meghalayan cherry fruit (Prunus nepalensis) using response surface methodology (RSM) and artificial neural network (ANN) approach. J. Food Meas. Charact. 15(1):119–133. https://doi.org/10.1007/s11694-020-00611-0
Kaseke T., Opara U.L. and Fawole O.A. 2020. Fatty acid composition, bioactive phytochemicals, antioxidant properties and oxidative stability of edible fruit seed oil: effect of preharvest and processing factors. Heliyon. 6(9):e04962. https://doi.org/10.1016/j.heliyon.2020.e04962
Khadivi A., Mirheidari F., Moradi Y. and Paryan S. 2022. Morphological and pomological diversity of wild Prunus microcarpa Boiss. germplasm. BMC Plant Biol. 22(1):185. https://doi.org/10.1186/s12870-022-03572-2
Kirkan, B., Sarikurkcu, C. and Zengin, G. (2022) Bioactive constituents, antioxidant effects and enzyme inhibitory properties of two Onosma species (Onosma trapezuntea and O. rigidum), South African J. Bot. 145: 142–148. https://doi.org/10.1016/j.sajb.2021.09.036.
Kumar S., Gupta A., Tahseen M.A. and Rastogi A. no date. A review of phytochemical and pharmacological action of Prunus armeniaca. 5(1): 107–115. https://doi.org/10.33545/27072827.2024.v5.i1b.115
Kumar V., Sachan R., Rahman M., Sharma K., Al-Abbasi,F.A. and Anwar F. 2021. Prunus amygdalus extract exert antidiabetic effect via inhibition of DPP-IV: in-silico and in-vivo approaches. J. Biomol. Struct. Dyn. 39(11):4160–4174. https://doi.org/10.1080/07391102.2020.1775124
de La Torre B.G. and Albericio F. 2021. The pharmaceutical industry in 2020. An analysis of FDA drug approvals from the perspective of molecules. Molecules. 26(3):627. https://doi.org/10.3390/molecules26030627
Lankatillake C., Luo S., Flavel M., Lenon G.B., Gill H., Huynh T. and Dias D.A. 2021. Screening natural product extracts for potential enzyme inhibitors: protocols, and the standardisation of the usage of blanks in α-amylase, α-glucosidase and lipase assays. Plant Methods. 171–19. https://doi.org/10.1186/s13007-020-00702-5
Le X.T., Huynh M.T., Pham T.N., Than V.T., Toan T.Q., Bach L.G., et al. 2019. Optimization of total anthocyanin content, stability and antioxidant evaluation of the anthocyanin extract from vietnamese carissa carandas L. Fruits. Processes. 7(7): 468. https://doi.org/10.3390/pr7070468
de Lima D.P., Júnior E. dos S.P., de Menezes A.V., de Souza D.A., de São José V.P.B., da Silva B.P., et al. 2024. Chemical composition, minerals concentration, total phenolic compounds, flavonoids content and antioxidant capacity in organic and conventional vegetables. Food Res. Int. 175(2024):113684. https://doi.org/10.1016/j.foodres.2023.113684
Magangana T.P., Makunga N.P., Fawole O.A. and Opara U.L. 2020. Processing factors affecting the phytochemical and nutritional properties of pomegranate (Punica granatum L.) peel waste: a review. Molecules. 25(20):4690. https://doi.org/10.3390/molecules25204690
Marčetić M., Samardžić S., Ilić T., Božić D.D. and Vidović B. 2022. Phenolic composition, antioxidant, anti-enzymatic, antimicrobial and prebiotic properties of Prunus spinosa L. fruits. Foods (Basel, Switzerland). 11(20):3289. https://doi.org/10.3390/foods11203289
Mikulic‐Petkovsek M., Stampar F., Veberic R. and Sircelj H. 2016. Wild Prunus fruit species as a rich source of bioactive compounds. J. Food Sci. 81(8): C1928–C1937. https://doi.org/10.1111/1750-3841.
Nardini M. 2023. An overview of bioactive phenolic molecules and antioxidant properties of beer: emerging trends., molecules. 28(7):3221. https://doi.org/10.3390/molecules28073221
Nastić N., Lozano‐Sánchez J., Borrás‐Linares I., Švarc‐Gajić J. and Segura‐Carretero A. 2020. New technological approaches for recovering bioactive food constituents from sweet cherry (Prunus avium L.) stems. Phytochem. Anal. 31(1):119–130.
Newman D.J. and Cragg G.M. 2020. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83(3):770–803.
Nortjie E., Basitere M., Moyo D. and Nyamukamba P. 2022. Extraction methods, quantitative and qualitative phytochemical screening of medicinal plants for antimicrobial textiles: a review. Plants. 11(15):2011. https://doi.org/10.3390/plants11152011
Nowak A., Szatan D., Zielonka-Brzezicka J., Florkowska K., Muzykiewicz A. and Klimowicz A. 2020. Antioxidant activity of selected parts of Prunus domestica L. harvested at two ripening stages, Pomeranian J. Life Sci. 66(2):65–69.
Nowicka P., Wojdyło A. and Laskowski P. 2018. Inhibitory potential against digestive enzymes linked to obesity and type 2 diabetes and content of bioactive compounds in 20 cultivars of the peach fruit grown in Poland. Plant Foods Hum. Nutr. 73(4):314–320. https://doi.org/10.1007/s11130-018-0688-8
Nowicka P., Wojdyło A. and Samoticha J. 2016. Evaluation of phytochemicals, antioxidant capacity, and antidiabetic activity of novel smoothies from selected Prunus fruits. J. Funct. Foods. 25(2016):397–407. https://doi.org/https://doi.org/10.1016/j.jff.2016.06.024
Nunes A.R., Flores-Félix J.D., Gonçalves A.C., Falcão A., Alves G. and Silva L.R. 2022. Anti-inflammatory and antimicrobial activities of Portuguese Prunus avium L. (Sweet Cherry) by-products extracts. Nutrients. 14(21): 4576. https://doi.org/10.3390/nu14214576
Nas M.N., Boleck Y. and Bardak A. 2011. Genetic diversity and phylogenetic relationships of Prunus microcarpa CA Mey. subsp. tortuosa analyzed by simple sequence repeats (SSRs). Sci. Hortic. (Amsterdam). 127(3):220–227. https://doi.org/10.1016/j.scienta.2010.09.018
Ozzengin B., Zannou O. and Koca I. 2023. Quality attributes and antioxidant activity of three wild plums from Prunus spinosa and Prunus domestica species. Meas. Food. 10(2023):100079. https://doi.org/10.1016/j.meafoo.2023.100079
Paula Sales P., Das Dores Alves de Oliveira M., Figueiredo Watanabe J.M., da Silva Barbosa A.P., da Mata B.C.A., de Jesus e Silva Viana M., et al. 2023. Phytochemical characterization, isolation, antioxidant and cytogenotoxic activity of leaves of heliotropium elongatum (Lehm) I.M. Johnst. J. Toxicol. Environ. Health. Part A. 86(23):871–897. https://doi.org/10.1080/15287394.2023.2254815
Percie du Sert N., Hurst V., Ahluwalia A., Alam S., Avey M.T., Baker M., et al. 2020. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMC Vet. Res. 16(1):242. https://doi.org/10.1186/s12917-020-02451-y
Pilařová V., Plachká K., Herbsová D., Kosturko Š., Svec F. and Nováková L. 2024. Comprehensive two-step supercritical fluid extraction for green isolation of volatiles and phenolic compounds from plant material††Electronic supplementary information (ESI) available. Green Chem. 26(11):6480–6489. https://doi.org/https://doi.org/10.1039/d4gc00371c
Pradhan D., Baishya H. and Das A.B. 2022. Effect of ultrasound, centrifugation, and enzymatic pretreatments on phytochemical properties and membrane fouling during microfiltration of Sohiong (Prunus nepalensis L.) juice. Food Sci. Biotechnol. 31(11):1443–1450. https://doi.org/10.1007/s10068-022-01129-5
Samaraweera, Thummini, Samaraweera, Thumuli, Senadeera, N.N. and Ranaweera, C.B. 2023. In vitro anti-inflammatory activity of leaves of Jeffreycia zeylanica using the egg albumin denaturation method and human red blood cell stabilization method. Asian Plant Res. J. 11(6):56–64. https://doi.org/10.9734/aprj/2023/v11i6230
Seniuk I.V., Kravchenko V.M. and Amin B.I. 2022. Phytochemical characteristics and the study of acute toxicity of extracts from fruit Рrunus domestica. Farm. Zh. (1):94–102. https://doi.org/10.32352/0367-3057.1.22.09
Seo K.H., Choi S.Y., Jin Y., Son H., Kang Y.S., Jung S.H., et al. 2020. Anti-inflammatory role of Prunus persica L. Batsch methanol extract on lipopolysaccharide-stimulated glial cells. Mol. Med. Rep. 21(5):2030–2040.
Shan S., Huang X., Shah M.H. and Abbasi A.M. 2019. Evaluation of polyphenolics content and antioxidant activity in edible wild fruits. Biomed Res. Int. 2019:1381989. https://doi.org/10.1155/2019/1381989
Sohal R.S., Kamzalov S., Sumien N., Ferguson M., Rebrin I., Heinrich K.R. et al. 2006. Effect of coenzyme Q10 intake on endogenous coenzyme Q content, mitochondrial electron transport chain, antioxidative defenses, and life span of mice. Free Radic. Biol. Med. 40(3):480–487. https://doi.org/10.1016/j.freeradbiomed.2005.08.037
Song J., Kim J., Park H.J. and Kim H. 2020. Anti-obesity effects of a Prunus persica and Nelumbo nucifera mixture in mice fed a high-fat diet. Nutrients. 12(11):3392. https://doi.org/10.3390/nu12113392
Song W., Qin S.-T., Fang F.-X., Gao Z.-J., Liang D.-D., Liu L.-L., et al. 2018. Isolation and purification of condensed tannin from the leaves and branches of Prunus cerasifera and its structure and bioactivities. Appl. Biochem. Biotechnol. 175(2018):464–475.https://doi.org/10.1007/s12010-017-2635-9
Taghizadeh S.F., Asgharzadeh A., Asili J., Sahebkar A. and Shakeri A. 2015. Evaluation of total phenolic content and antioxidant activity in ten selected mahaleb (Prunus mahaleb L.) genotypes. Int. J. Hortic. Sci. Technol. 2(2):187–197.
Telichowska A., Kobus-Cisowska J., Ligaj M., Stuper-Szablewska K., Szymanowska D., Tichoniuk, M., et al. 2020. Polyphenol content and antioxidant activities of Prunus padus L. and Prunus serotina L. leaves: electrochemical and spectrophotometric approach and their antimicrobial properties. Open Chem. 18(1):1125–1135.
Telichowska A., Kobus-Cisowska J. and Szulc P. 2020. Phytopharmacological possibilities of bird cherry Prunus padus L. and Prunus serotina L. species and their bioactive phytochemicals. Nutrients. 12(7):1966. https://doi.org/10.3390/nu12071966
Thida M., Aung H.M., Wai N.P. and Moe T.S. 2024. In vitro evaluation of antioxidant, antiglycation and anti-protein denaturation potentials of indigenous Myanmar medicinal plant extracts. J. Herbs. Spices Med. Plants. 30(3):278–291.
Trifan A., Zengin G., Sinan K.I., Skalicka-Woźniak K., Minceva M. and Luca S.V. 2022. Symphytum ibericum Steven: LC–HRMS/MS-based phytochemical profile, in vitro antioxidant and enzyme inhibitory potential. Chem. Biol. Technol. Agric. 9(1):42. https://doi.org/10.1186/s40538-022-00308-0
Vaou N., Stavropoulou E., Voidarou C., Tsigalou C. and Bezirtzoglou E. 2021. Towards advances in medicinal plant antimicrobial activity: a review study on challenges and future perspectives. Microorganisms. 9(10):2041. https://doi.org/10.3390/microorganisms9102041
Villalobos M. del C., Martín A., Serradilla M.J., López-Corrales M., Palomino-Vasco M. and Córdoba M. de G. 2024. Effect of modified atmosphere packaging (MAP) on health-promoting compounds, chlorophylls and antioxidant capacity of three fig cultivars (Ficus carica L.). Eur. Food Res. Technol. 250(11):2767–2780. https://doi.org/10.1007/s00217-024-04574-0
Vinatoru M., Mason T.J. and Calinescu Ijtt. 2017. Ultrasonically assisted extraction (UAE) and microwave-assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal. Chem. 97159–178.
Vivarelli F., Canistro D., Franchi P., Sapone A., Vornoli A., Della Croce C., et al. 2016. Disruption of redox homeostasis and carcinogen metabolizing enzymes changes by administration of vitamin E to rats. Life Sci. 145166–173. https://doi.org/10.1016/j.lfs.2015.12.033
Vo, Q. V, Hoa, N.T., Flavel, M., Thong, N.M., Boulebd, H., Nam, P.C., Quang, D.T., et al. (2023) A comprehensive study of the radical scavenging activity of rosmarinic acid, J. Org. Chem. 88: 17237–17248. https://doi.org/10.1021/acs.joc.3c02093
Willis, K. 2017. State of the world’s plants 2017. Royal Botanics Gardens Kew.
Wojtunik-Kulesza, K.A. 2020. Approach to optimization of FRAP methodology for studies based on selected monoterpenes. Molecules. 25(22):5267. https://doi.org/10.3390/molecules25225267
Wu W., Li G., Zhou W., Wang E., Zhao X., Song X. and Zhao Y. 2023. Comparison of composition, free-radical-scavenging capacity, and antibiosis of fresh and dry leave aqueous extract from michelia shiluensis. Molecules. 28(16):5935. ttps://doi.org/10.3390/molecules28165935
Yüksekkaya Ş., Başyiğit B., Sağlam H., Pekmez H., Cansu Ü., Karaaslan A. and Karaaslan M. 2021. Valorization of fruit processing by-products: free, esterified, and insoluble bound phytochemical extraction from cherry (Prunus avium) tissues and their biological activities, J. Food Meas. Charact. 15(2):1092–1107. https://doi.org/10.1007/s11694-020-00698-5
Yun J.-M., Im S.-B., Roh M.-K., Park S.-H., Kwon H.-A., Lee J.-Y., et al. 2014. Prunus yedoensis bark inhibits lipopolysaccharide-Induced inflammatory cytokine synthesis by IκBα degradation and MAPK activation in macrophages, J. Med. Food. 17(4):407–413. https://doi.org/10.1089/jmf.2013.2825
Zengin G., Sarikurkcu C., Gunes E., Uysal A., Ceylan R., Uysal S., et al. 2015. Two ganoderma species: profiling of phenolic compounds by HPLC-DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer’s disease and skin disorders. Food Funct. 6(8):2794–2802. https://doi.org/10.1039/c5fo00665a
Zhang X., Wang Jiali, Zhu H., Wang Jianhao and Zhang H. 2022. Chemical composition, antibacterial, antioxidant and enzyme inhibitory activities of the essential oil from leaves of Psidium guajava L. Chem. Biodivers. 19(5):e202100951. https://doi.org/10.1002/cbdv.202100951.