Cyclodipeptides (CDPs), the enzymatic synthesis, and the potential functional properties to exhibit broad varieties of pharmacological properties—A comprehensive review

Main Article Content

Chasheen Fizza
Muhammad Israr
Muhammad Jalal Khan
Abid Sarwar
Tariq Aziz
Cui Chun
Liqing Zhao
Majid Alhomrani
Walaa F. Alsanie
Abdulhakeem S. Alamri
Fahad Al-Asmari
Fakhria A. Al-Joufi

Keywords

antimicrobial activity, bioactivity, CDPs, food, pharmacological properties

Abstract

Cyclodipeptides (CDPs) are distinct chemical scaffolds that show a wide range of bioactivities pertinent to medicine, agriculture, chemical catalysis, and material sciences. CDPs, also known as diketopiperazines (DKPs), are tiny naturally occurring peptides that have sparked interest due to their various bioactive features and possible applications in the food, pharmaceutical, and medical sectors. CDPs are produced by the intramolecular cyclization of two amino acids and can be found in a variety of environments, such as fungi, plants, animals, bacteria, and processed foods. CDPs are highly stable because of their solid structure and durability against enzymatic degradation, making them appropriate choices for medicinal and functional food applications. CDPs are frequently seen as undesirable byproducts in processed meals, especially those that include dairy, meat, and fermented drinks; new research indicates that they may improve flavor and benefit human health. Bioactive substances having anti-inflammatory, antibacterial, antioxidant, and neuroprotective qualities have been recognized as CDPs. Certain CDPs, such cyclo(Phe-Pro), along with cyclo(Pro-Pro), have shown promise in controlling metabolic and cognitive functions in the body, while others, such as cyclo(His-Pro), have demonstrated anticancer activity by causing cancer cells to undergo apoptosis. In spite of widespread research, little is known about the precise health consequences and ideal levels of CDP intake from dietary sources. Considering this, the present review attempts to compile the most recent information on the occurrence, generation, and biological activity of CDPs. To completely comprehend CDPs’ bioactivity and their significance to human health, more research is required. Additionally, creative approaches for using these peptides for creating functional foods and preventing diseases should be investigated.

Abstract 153 | PDF Downloads 90 HTML Downloads 0 XML Downloads 17

References

Abbood N., Tien Duy Vo, Jonas Watzel K.A.J.B., and Bode H.B. 2022. S Non-ribosomal peptide synthetases for the rapid generation of tailormade. Chem Eur J. 28(26):1–9. 10.1002/chem.202103963

Adler-Abramovich L., Aronov D., Beker P., Yevnin M., Stempler S., Buzhansky L., Rosenman G., and Gazit E. 2009. Self-assembled arrays of peptide nanotubes by vapour deposition. Nature Nanotechnol. 4(12):849–854. 10.1038/nnano.2009.298

Adrover-Castellano M.L., Schmidt J.J., and Sherman, D.H. 2021. Biosynthetic cyclization catalysts for the assembly of peptide and polyketide natural products. Chem Cat Chem. 13(9):2095–2116. 10.1002/cctc.202001886

Alberdi-Cedeño J., Ibargoitia M.L., and Guillén M.D. 2017. Bioactive compounds detected for the first time in corn oil: cyclic dipeptides and other nitrogenated compounds. J Food Comp Anal. 62(June):197–204. 10.1016/j.jfca.2017.06.005

Alberdi-Cedeño J., Ibargoitia M.L., and Guillén M.D. 2019. Monitoring of minor compounds in corn oil oxidation by direct immersion-solid phase microextraction-gas chromatography/mass spectrometry. New oil oxidation markers. Food Chem. 290(March):286–294. 10.1016/j.foodchem.2019.04.001

André A., Casty B., Ullrich L., and Chetschik I. 2022. Use of molecular networking to identify 2,5-diketopiperazines in chocolates as potential markers of bean variety. Heliyon. 8(9):1–9. 10.1016/j.heliyon.2022.e10770

Andruszkiewicz P.J., D’Souza R.N., Altun I., Corno M., and Kuhnert N. 2019. Thermally induced formation of taste-active 2,5-diketopiperazines from short-chain peptide precursors in cocoa. Food Res Int. 121(March):217–228. 10.1016/j.foodres.2019.03.015

Aziz T., Qadir R., Anwar F., Naz S., Nazir N., Nabi G., Haiying C., Lin L., Alharbi M., Alasmari A.F. (2024). Optimal Enzyme-Assisted Extraction of Phenolics from Leaves of Pongamia pinnata via Response Surface Methodology and Artificial Neural Networking. Appl Biochem Biotechnol. 2024,1-14. 10.1007/s12010-024-04875-w.

Balachandra C., Padhi D., and Govindaraju T. 2021. Cyclic dipeptide: a privileged molecular scaffold to derive structural diversity and functional utility. Chem Med Chem. 16(17):2558–2587. 10.1002/cmdc.202100149

Begum S., Hira K., Basha A., Paramita P., Prakash O., Araya H., and Fujimoto Y. 2020. International immunopharmacology dipeptides from pseudomonas sp. (ABS-36) inhibit pro-in flammatory cytokines and alleviate crystal-induced renal injury in mice L-proline-based-cyclic. Int Immunopharmacol. 73(February):395–404. 10.1016/j.intimp.2019.05.044

Bellezza I., Peirce M.J., and Minelli A. 2019. Cyclic peptides in neurological disorders: the case of cyclo(His-Pro). In Tommonaro, G., (Ed): Quorum sensing: molecular mechanism and biotechnological application. Elsevier, pp. 257–286. 10.1016/B978-0-12-814905-8.00010-1

Bennur T., Ravi Kumar A., Zinjarde S.S., and Javdekar V. 2016. Nocardiopsis species: a potential source of bioactive compounds. J App Microbiol. 120(1):1–16. 10.1111/jam.12950

Bettens F.L., Bettens R.P.A., Brown R.D., and Godfrey P.D. 2000. The microwave spectrum, structure, and ring-puckering of the cyclic dipeptide diketopiperazine. J Am Chem Soc. 122(24):5856–5860. 10.1021/ja000042n

Bikaki M., Shah R., Müller A., and Kuhnert N. 2021. Heat-induced hydrolytic cleavage of the peptide bond in dietary peptides and proteins in food processing. Food Chemi. 357(March):129621. 10.1016/j.foodchem.2021.129621

Bojarska, J., and Wojciech M.W. 2021. Ultra-Short Cyclo-Peptides as Bio-Inspired Therapeutics: Proline-Based 2,5-Diketopiperazines (DKP). Proceedings 79, no. 1: 10. 10.3390/IECBM2020-08804

Borthwick A.D., and Da Costa N.C. 2017. 2,5-Diketopiperazines in food and beverages: taste and bioactivity. Crit Rev Food Sci Nutr. 57(4):718–742. 10.1080/10408398.2014.911142

Borthwick A.D., Grove T., and Nw L. 2012. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev. 112(7):3641–3716. 10.1021/cr200398y

Bratakos S.M., Zoumpoulakis P., Siapi E., Riganakos K., and Sinanoglou V.J. 2016. Determination of 2,5-diketopiperazines in Greek processed olives by liquid chromatography/mass spectrometry analysis. Curr Res Nutr Food Sci. 4(special issue 2):63–76. 10.12944/CRNFSJ.4.Special-Issue-October.09

Brauns S.C., Dealtry G., Milne P., Naudé R., and Van De Venter M. 2005. Caspase-3 activation and induction of PARP cleavage by cyclic dipeptide cyclo(Phe-Pro) in HT-29 cells. Anticancer Res. 25(6 B):4197–4202.

Brauns S.C., Milne P., Naudé R., and Van De Venter M. 2004. Selected cyclic dipeptides inhibit cancer cell growth and indace apoptosis in HT-29 colon cancer cells. Anticancer Res. 24(3 A):1713–1719.

Camus A., Truong G., Mittl P.R.E., Markert G., and Hilvert D. 2022. Reprogramming nonribosomal peptide synthetases for site-specific insertion of α-hydroxy acids. J Am Chem Soc. 144(38):17567–17575. 10.1021/jacs.2c07013

Chen M.Z., Dewis M.L., Kraut K., Merritt D., Reiber L., Trinnaman L., and Da Costa N.C. 2009. 2,5-Diketopiperazines (cyclic dipeptides) in beef: identification, synthesis, and sensory evaluation. J Food Sci. 74(2):100–105. 10.1111/j.1750-3841.2009.01062.x

Chen Y.H., Liou S.E., and Chen C.C. 2004. Two-step mass spectrometric approach for the identification of diketopiperazines in chicken essence. Eur Food Res Technol. 218(6):589–597. 10.1007/s00217-004-0901-x

Chu J., Vila-Farres X., and Brady S.F. 2019. Bioactive synthetic-bioinformatic natural product cyclic peptides inspired by nonribosomal peptide synthetase gene clusters from the human microbiome. J Am Chem Soc. 141(40):15737–15741. 10.1021/jacs.9b07317

Coelho M.C., Malcata F.X., and Silva C.C.G. 2022. Lactic acid bacteria in raw-milk cheeses: from starter cultures to probiotic functions. Foods. 11(15):1–32. 10.3390/foods11152276

Core R.B. 1993. The crystal structure of diketopiperazine. Jap Circul J. 57:1109.

Cui H., Chen Y., Aziz T., Asmari F.A., Alwethayanu S.A., Shi C., Lin L. (2024). Antibacterial mechanisms of diacetyl on Listeria monocytogenes and its application in Inner Mongolian cheese preservation via gelatin-based edible films. Food Control. 168,110920,1-14. 10.1016/j.foodcont.2024.110920

Da Costa N.C., Chen M.Z., Merritt D., and Trinnaman L. 2010. Methionine-containing cyclic dipeptides: occurrence in natural products, synthesis, and sensory evaluation. ACS Symp Series. 1042:111–120. 10.1021/bk-2010-1042.ch011

Deepa I., Kumar S.N., Sreerag R.S., Nath V.S., and Mohandas C. 2015. Purification and synergistic antibacterial activity of arginine derived cyclic dipeptides, from Achromobacter sp. associated with a rhabditid entomopathogenic nematode against major clinically relevant biofilm forming wound bacteria. Front Microbiol. 6(Aug):1–16. 10.3389/fmicb.2015.00876

Ferro J.N. de S., de Aquino F.L.T., de Brito R.G., dos Santos P.L., Quintans J., de S.S., de Souza L.C., de Araújo A.F., Diaz B.L., et al. 2015. Cyclo-gly-pro, a cyclic dipeptide, attenuates nociceptive behaviour and inflammatory response in mice. Clin Exper Pharmacol Physiol. 42(12):1287–1295. 10.1111/1440-1681.12480

Gang D., Kim D.W., and Park H.S. 2018. Cyclic peptides: promising scaffolds for biopharmaceuticals. Genes. 9(11):557. 10.3390/genes9110557

Gao X., Haynes S.W., Ames B.D., Wang P., Vien L.P., Walsh C.T., and Tang Y. 2012. Terminal condensation-like domain. Nature Chem Biol. 8(10):823–830. 10.1038/nchembio.1047

Gautschi M., Schmid J.P., Peppard T.L., Ryan T.P., Tuorto R.M., and Yang X. 1997. Chemical characterization of diketopiperazines in beer. J Agr Food Chem. 45(8):3183–3189. 10.1021/jf9700992

Geha R., Buckley C.E., Greenberger P., Patterson R., Polmar S., Saxon A., Rohr A., Yang W., and Drouin M. 1993. Aspartame is no more likely than placebo to cause urticaria/angioedema: results of a multicenter, randomized, double-blind, placebo-controlled, crossover study. J Allergy Clin Immunol. 92(4):513–520. 10.1016/0091-6749(93)90075-Q

Giessen T.W., and Marahiel M.A. 2014. The tRNA-dependent biosynthesis of modified cyclic dipeptides. Int J Mol Sci. 15(8):14610–14631. 10.3390/ijms150814610

Ginz M., and Engelhardt U.H. 2000. Identification of proline-based diketopiperazines in roasted coffee. J Agr Food Chem. 48(8):3528–3532. 10.1021/jf991256v

Ginz M., and Engelhardt U.H. 2001. Identification of new diketopiperazines in roasted coffee. Eur Food Res Technol. 213(1):8–11. 10.1007/s002170100322

Goethals S., Rombouts C., Hemeryck L.Y., Van Meulebroek L., Van Hecke T., Vossen E., Van Camp J., De Smet S., and Vanhaecke L. 2020. Untargeted metabolomics to reveal red versus white meat–associated gut metabolites in a prudent and western dietary context. Mol Nutr Food Res. 64(12):1–30. 10.1002/mnfr.202000070

Gowrishankar S., Sivaranjani M., Kamaladevi A., Ravi A.V., Balamurugan K., and Pandian S.K. 2016. Cyclic dipeptidecyclo (l-leucyl-l-prolyl) from marine Bacillus amyloliquefaciens mitigates biofilm formation and virulence in listeria monocytogenes. FEMS Pathog Dis. 74(4):1–12. 10.1093/femspd/ftw017

Hajirostamloo B. 2010. Bioactive component in milk and dairy product. Int J Agr Biosyst Eng. 4(12):870–874.

Harken L., and Li S.M. 2021. Modifications of diketopiperazines assembled by cyclodipeptide synthases with cytochrome P450 enzymes. Appl Microbiol Biotechnol. 105(6):2277–2285. 10.1007/s00253-021-11178-1

Hiroyuki I. 1981. Incidence of brain tumors in rats fed aspartame. Toxicol Lett. 7(6):433–437. 10.1016/0378-4274(81)90089-8

Ho C.T. 1996. Thermal generation of Maillard aromas. In: J.W., and S.L. Ikan, R. (Eds.) The Maillard reaction: consequences for the chemical and life sciences. pp. 27−53.

Huan Y., Kong Q., Mou H., and Yi H. 2020. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. 11:1–21. 10.3389/fmicb.2020.582779

Ishibashi N., Kouge K., Shinoda I., Kanehisa H., and Okai H. 1988. A mechanism for bitter taste sensibility in peptides. Agric Biol Chem. 52(3):819–827. 10.1080/00021369.1988.10868743

Ishii H., Koshimizu T., Usami S., and Fujimoto T. 1981. Toxicity of aspartame and its diketopiperazine for Wistar rats by dietary administration for 104 weeks. Toxicology. 21(2):91–94. 10.1016/0300-483X(81)90119-0

Jakas A., and Horvat Š. 2003. Study of degradation pathways of amadori compounds obtained by glycation of opioid pentapeptide and related smaller fragments: stability, reactions, and spectroscopic properties. Biopolymers. 69(4):421–431. 10.1002/bip.10338

Jo Y., Benoist D.M., Ameerally A., and Drake M.A. 2018. Sensory and chemical properties of Gouda cheese. J Dairy Sci. 101(3):1967–1989. 10.3168/jds.2017-13637

Jung E.Y., Lee H., Choi J.W., Ra K.S., Kim M., and Suh H.J. 2011. Glucose tolerance and antioxidant activity of spent brewer’s yeast hydrolysate with a high content of cyclo-his-pro (CHP). J Food Sci. 76(2):272–278. 10.1111/j.1750-3841.2010.01997.x

Karanam G., and Arumugam M.K. 2020. Reactive oxygen species generation and mitochondrial dysfunction for the initiation of apoptotic cell death in human hepatocellular carcinoma HepG2 cells by a cyclic dipeptide cyclo(-pro-tyr). Mol Biol Rep. 47(5):3347–3359. 10.1007/s11033-020-05407-5

Karanam G., Arumugam M.K., and Sirpu Natesh N. 2020. Anticancer effect of marine sponge-associated bacillus pumilus AMK1 derived dipeptide cyclo (-pro-tyr) in human liver cancer cell line through apoptosis and G2/M phase arrest. Int J Pept Res Therap. 26(1):445–457. 10.1007/s10989-019-09850-2

KGK D., Kumari S., and Malla R.R. 2021. Marine cyclic dipeptide cyclo (L-Leu-L-Pro) protects normal breast epithelial cells from tBHP-induced oxidative damage by targeting CD151. Arch Breast Cancer. 8(3):162–173. 10.32768/abc.202183162-173

Khodorova N.V., Jouan-Rimbaud Bouveresse D., Pilard S., Cordella C., Locquet N., Oberli M., and Gaudichon C. 2022. Consumption of boiled, but not grilled, roasted, or barbecued beef modifies the urinary metabolite profiles in rats. Mol Nutr Food Res. 66(12). 10.1002/mnfr.202100872

Khorshidian N., Ghasemzadeh-Mohammadi V., Yousefi M., and Mortazavian A.M. 2022. Comparison of antifungal properties of lactobacillus rhamnosus and lactobacillus reuteri with potassium sorbate in the Iranian Uf-Feta cheese. J Microbiol Biotechnol Food Sci. 11(5):1–5. 10.55251/jmbfs.3318

Kumar N., Mohandas C., Nambisan B., Kumar D.R.S., and Lankalapalli R.S. 2013. Isolation of proline-based cyclic dipeptides from Bacillus sp. N strain associated with rhabitid entomopathogenic nematode and its antimicrobial properties. World J Microbiol Biotechnol. 29(2):355–364. 10.1007/s11274-012-1189-9

Kumar S.N., Sreekala S.R., Chandrasekaran D., Nambisan B., and Anto R.J. 2014. Biocontrol of Aspergillus species on peanut kernels by antifungal diketopiperazine producing Bacillus cereus associated with entomopathogenic nematode. PLoS One. 9(8):1–14. 10.1371/journal.pone.0106041

Kurbasic M., Semeraro S., Garcia A.M., Kralj S., Parisi E., Deganutti C., De Zorzi R., and Marchesan S. 2019. Microwave-assisted cyclization of unprotected dipeptides in water to 2,5-piperazinediones and self-assembly study of products and reagents. Synthesis (Germany). 51(14):2839–2844. 10.1055/s-0037-1612376

Kwak M.K., Liu R., and Kang S.O. 2018. Antimicrobial activity of cyclic dipeptides produced by Lactobacillus plantarum LBP-K10 against multidrug-resistant bacteria, pathogenic fungi, and influenza A virus. Food Control. 85:223–234. 10.1016/j.foodcont.2017.10.001

Kwak M.K., Liu R., Kwon J.O., Kim M.K., Kim A.H.J., and Kang S.O. 2013. Cyclic dipeptides from lactic acid bacteria inhibit proliferation of the influenza a virus. J Microbiol. 51(6):836–843. 10.1007/s12275-013-3521-y

Lee K.H., Kim G.W., and Rhee K.H. 2010. Identification of Streptomyces sp. KH29, which produces an antibiotic substance processing an inhibitory activity against multidrug-resistant Acinetobacter baumannii. J Microbiol Biotechnol. 20(12):1672–1676. 10.4014/jmb.1007.07035

Li D., Wang Y., Kim E. La and Hong J. 2021. Neuroprotective effect of cyclo-(L-Pro-L-Phe) isolated from the jellyfish-derived fungus Aspergillus flavus. Marine Drugs. 19(8):1–18.

Lu C.-Y. 2006. Peptides as flavor precursors in maillard reaction.

Maehashi K., and Huang L. 2009. Bitter peptides and bitter taste receptors. Cell Mol Life Sci. 66(10):1661–1671. 10.1007/s00018-009-8755-9

Mallikarjun S., and Sieburth R.M.N. 2015. Aspartame and risk of cancer: a meta-analytic review. Arch Environ Occupat Health. 70(3):133–141. 10.1080/19338244.2013.828674

Malonis R.J., Lai J.R., and Vergnolle O. 2020. Peptide-based vaccines: current progress and future challenges. Chem Rev. 120(6):3210–3229. 10.1021/acs.chemrev.9b00472

Martínez-Núñez M.A., and López V.E.L.y. 2016. Nonribosomal peptides synthetases and their applications in industry. Sustain Chem Proc. 4(1):1–8. 10.1186/s40508-016-0057-6

McClure A.P., Spinka C.M., and Grün I.U. 2021. Quantitative analysis and response surface modeling of important bitter compounds in chocolate made from cocoa beans with eight roast profiles across three origins. J Food Sci. 86(11):4901–4913. 10.1111/1750-3841.15924

Mendham A.P., Palmer R.A., Potter B.S., Dines T.J., Snowden M.J., Withnall R., and Chowdhry B.Z. 2010a. Vibrational spectroscopy and crystal structure analysis of two polymorphs of the di-amino acid peptide cyclo(L-Glu-L-Glu). J Raman Spectrosc. 41(3):288–302. 10.1002/jrs.2467

Mendham A.P., Potter B.S., Palmer R.A., Dines T.J., Mitchell J.C., Withnalld R., and Chowdhry B.Z. 2010b. Vibrational spectra and crystal structure of the di-amino acid peptide cyclo(L-Met-L-Met): comparison of experimental data and DFT calculations. J Raman Spectrosc. 41(2):148–159. 10.1002/jrs.2426

Milne P.J., and Kilian G. 2010. The properties, formation, and biological activity of 2,5-diketopiperazines. Comp Natural Prod Chem Biol. 5:657–698. 10.1016/b978-008045382-8.00716-4

Minelli A., Bellezza I., Grottelli S., and Galli F. 2008. Focus on cyclo(His-Pro): history and perspectives as antioxidant peptide. Amino Acids. 35(2):283–289. 10.1007/s00726-007-0629-6

Minelli A., Conte C., Grottelli S., Bellezza I., Cacciatore I., and Bolaños J.P. 2009. Cyclo(His-Pro) promotes cytoprotection by activating Nrf2-mediated up-regulation of antioxidant defence. J Cell Mol Med. 13(6):1149–1161. 10.1111/j.1582-4934.2008.00326.x

Misiura M., and Miltyk W. 2019. Proline-containing peptides—new insight and implications: a review. BioFactors. 45(6):857–866. 10.1002/biof.1554

Muhialdin B.J., Hassan Z., and Saari N. 2018. In vitro antifungal activity of lactic acid bacteria low molecular peptides against spoilage fungi of bakery products. Ann Microbiol. 68(9):557–567. 10.1007/s13213-018-1363-x

Münger L.H., Garcia-Aloy M., Vázquez-Fresno R., Gille D., Rosana A.R.R., Passerini A., et al. 2018. Biomarker of food intake for assessing the consumption of dairy and egg products. Genes Nutr. 13(1):1–18. 10.1186/s12263-018-0615-5

Ni L., Zhuge F., Yang S., Ma L., Zheng A., Zhao Y., Hu L., Fu Z., and Ni Y. 2021. Hydrolyzed chicken meat extract attenuates neuroinflammation and cognitive impairment in middle-aged mouse by regulating M1/M2 microglial polarization. J Agric Food Chem. 69(34):9800–9812. 10.1021/acs.jafc.1c03541

Nilov D.K., Yashina K.I., Gushchina I.V., Zakharenko A.L., Sukhanova M.V., Lavrik, O.I., and Š, V.K. 2018. 2,5 Diketopiperazines : a new class of poly (ADP ribose) polymerase inhibitors. Biochemistry (Mosc). 83(2):152–158. 10.1134/S0006297918020074

Nishanth Kumar S., Dileep C., Mohandas C., Nambisan B., and Ca J. 2014a. Cyclo(D-Tyr-D-Phe): a new antibacterial, anticancer, and antioxidant cyclic dipeptide from Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode. J Peptide Sci. 20(3):173–185. 10.1002/psc.2594

Nishanth Kumar S., Mohandas C., and Nambisan B. 2014b. Purification, structural elucidation and bioactivity of tryptophan containing diketopiperazines, from Comamonas testosteroni associated with a rhabditid entomopathogenic nematode against major human-pathogenic bacteria. Peptides. 53:48–58. 10.1016/j.peptides.2013.09.019

Novak B., Rainer V., Sulyok M., Haltrich D., Schatzmayr G., and Mayer E. 2019. Twenty-eight fungal secondary metabolites detected in pig feed samples: their occurrence, relevance and cytotoxic effects in vitro. Toxins. 11(9):1–20. 10.3390/toxins11090537

Ortiz A., and Sansinenea E. 2017. Cyclic dipeptides: secondary metabolites isolated from different microorganisms with diverse biological activities. Curr Med Chem. 24(25):2773–2780. 10.2174/0929867324666170623092818

Otsuka Y., Arita H., Sakaji M., Yamamoto K., Kashiwagi T., Shimamura T., and Ukeda H. 2019. Investigation of the formation mechanism of proline-containing cyclic dipeptide from the linear peptide. Biosci Biotechnol Biochem. 83(12):2355–2363. 10.1080/09168451.2019.1659718

Otsuka Y., Sakaji M., Arita H., and Kashiwagi T. 2021. Determination of cyclic dipeptides in various types of cheeses. Milk Sci. 70(2):63–73.

Ou Y.X., Huang J.F., Li X.M., Kang Q.J., and Pan Y.T. 2016. Three new 2,5-diketopiperazines from the fish intestinal Streptomyces sp. MNU FJ-36. Natural Prod Res. 30(15):1771–1775. 10.1080/14786419.2015.1137570

Pappas C.G., Wijerathne N., Sahoo J.K., Jain A., Kroiss D., Sasselli I.R., Pina A.S., Lampel A., and Ulijn R.V. 2020. Spontaneous aminolytic cyclization and self-assembly of dipeptide methyl esters in water. Chem Syst Chem. 2(5). 10.1002/syst.202000013

Pérez-Mellor A., Barbu-debus K. Le and Zehnacker A. 2020. Solid-state synthesis of cyclo LD-diphenylalanine: a chiral phase built from achiral subunits. Chirality.;32(5):693-703. 10.1002/chir.23195

Pérez-Picaso L., Escalante J., Olivo H.F., and Rios M.Y. 2009. Efficient microwave-assisted syntheses of 2,5-diketopiperazines in aqueous media. Molecules. 14(8):2836–2849. 10.3390/molecules14082836

Poonia B.K., Sidhu A., and Sharma A.B. 2022. Cyclo(l-proline-l-serine) dipeptide suppresses seed borne fungal pathogens of rice: altered Cellular Membrane Integrity of Fungal Hyphae and Seed Quality Benefits. Journal of Agricultural and Food Chemistry, 70(7):2160–2168. 10.1021/acs.jafc.1c07659

Pourmasoumi F., De S., Peng H., Trottmann F., Hertweck C., and Kries H. 2022. Proof-reading thioesterase boosts activity of engineered nonribosomal peptide synthetase. ACS Chem Biol. 17(9):2382–2388. 10.1021/acschembio.2c00341

Prasad C. 1995. Bioactive cyclic dipeptides. Peptides. 16(1):151–164. 10.1016/0196-9781(94)00017-Z

Qader M.M., Hamed A.A., Soldatou S., Abdelraof M., Elawady M.E., Hassane A.S.I., Belbahri L., Ebel R., and Rateb M.E. 2021. Antimicrobial and antibiofilm activities of the fungal metabolites isolated from the marine endophytes epicoccum nigrum m13 and alternaria alternata 13a. Marine Drugs. 19(4):1–13. 10.3390/MD19040232

Qi J., Han H., Sui D., Tan S., Liu C., Wang P., Xie C., Xia X., Gao J. Ming and Liu C. 2022. Efficient production of a cyclic dipeptide (cyclo-TA) using heterologous expression system of filamentous fungus Aspergillus oryzae. Microb Cell Factories. 21(1):1–9. 10.1186/s12934-022-01872-8

Rasheed HA, Rehman A, Chen X, Aziz T, Alasmari FA, Alamri SA, Alhomrani M, Cui H, Lin L. (2024). Unveiling the anti-listerial effect of Citrus bergamia essential oil: Mechanism of membrane disruption and anti-hemolytic activity. Food Bioscience, 61, 104742, 1-10. 10.1016/j.fbio.2024.104742

Rizzi G.P. 1989. Heat-induced flavor formation from peptides. Therm Gen Aromas. 16:172–181. 10.1021/bk-1989-0409.ch016

Rüschenbaum J., Steinchen W., Mayerthaler F., Feldberg A.L., and Mootz H.D. 2022. FRET monitoring of a nonribosomal peptide synthetase elongation module reveals carrier protein shuttling between catalytic domains. Angewandte Chemie Int Ed. 202212994:1–10. 10.1002/anie.202212994

Ryan L.A.M., Fabio D.B., Arendt E.K., and Koehler P. 2009. Detection and quantitation of 2,5-diketopiperazines in wheat sourdough and bread. J Agric Food Chem. 57(20):9563–9568. 10.1021/jf902033v

Saadouli I., Euch E., Trabelsi E., and Mosbah A. 2020. Isolation, characterization and chemical synthesis of large spectrum antimicrobial cyclic dipeptide (l-leu-l-pro) from streptomyces misionensis v16r3y1 bacteria extracts. A novel 1 h NMR metabolomic approach. 1:1–13. Antibiotics (Basel). 21;9(5):270. 10.3390/antibiotics9050270.

Safiullina A.S., Buzyurov A.V, Ziganshina S.A., Gerasimov A.V, Schick C., Gorbatchuk V.V and Ziganshin M.A. 2020. Thermochimica acta using fast scanning calorimetry to study solid-state cyclization of dipeptide. Thermochimica Acta. 692(July):178748. 10.1016/j.tca.2020.178748

Sakamura S., Furukawa K., and Kasai T. 1978. Bitter diketopiperazines in roasted malts for beer brewing. Agric Biol Chem. 42(3):607–612. 10.1080/00021369.1978.10863026

Sánchez A., Vázquez A. (2017). Bioactive peptides: A review. Food Quality and Safety. 1(1):29–46. 10.1093/fqsafe/fyx006

Scarel M., and Marchesan S. 2021. Diketopiperazine gels: new horizons from the self-assembly of cyclic dipeptides. Molecules. 26(11):3376. 10.3390/molecules26113376

Schmeda-Hirschmann G., de Andrade J.P., Jiménez-Aspee F., and Mieres-Castro D. 2020. A cyclic dipeptide from the Chilean hazelnut cotyledons (Gevuina avellana Mol., Proteaceae). Sci Rep. 10(1):1–5. 10.1038/s41598-020-63983-9

Semon B.A. 2014. Dietary cyclic dipeptides, apoptosis and psychiatric disorders: a hypothesis. Med Hypotheses. 82(6):740–743. 10.1016/j.mehy.2014.03.016

Sharafeldin N.A. 2022. Polyketopiperazines: triketopiperazines, tetraketopiperazines synthesis, reactions, bioactivities and applications. Arkivoc. 2022(1):221–261. 10.24820/ark.5550190.p011.735

Sharma S., Pradhan R., Manickavasagan A., Thimmanagari M., and Dutta A. 2021. Evaluation of nitrogenous pyrolysates by Py–GC/MS for impacts of different proteolytic enzymes on corn distillers solubles. Food Bioprod Proc. 127(March):225–243. 10.1016/j.fbp.2021.03.004

Stamatelopoulou E., Agriopoulou S., Dourtoglou E., Chatzilazarou A., Drosou F., Marinea M., and Dourtoglou V. 2018. Diketopiperazines in wines. J Wine Res. 29(1):37–48. 10.1080/09571264.2018.1433137

Stanstrup J., and Rasmussen J.E. 2014. Intakes of whey protein hydrolysate and whole whey proteins are discriminated by LC–MS metabolomics. Metabolmics. 10:719–736. 10.1007/s11306-013-0607-9

Stark T., and Hofmann T. 2005. Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao). J Agric Food Chem. 53(18):7222–7231. 10.1021/jf051313m

Stro K. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides-4-OH-l-Pro and 3-phenyllactic acid. Appl Environ Microbiol. 68(9):4322–4327. 10.1128/AEM.68.9.4322

Takahashi K., Kabashima F., and Tsuchiya F. 2016. Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry reveals the correlation between chemical compounds in Japanese sake and its organoleptic properties. J Biosci Bioeng. 121(3):274–280. 10.1016/j.jbiosc.2015.06.016

Tan L.T., Chan C., Chan K., Pusparajah P., Khan T.M., Ser H., Lee L., and Goh B. 2019. Streptomyces sp. MUM256: a source for apoptosis inducing and cell cycle-arresting bioactive compounds against colon cancer cells. Cancers. 11(11):1742. 10.3390/cancers11111742

Temussi P.A. 2012. The good taste of peptides. J Peptide Sci. 18(2):73–82. 10.1002/psc.1428

Thaqi A., McCluskey A., and Scott J.L. 2008. A mild Boc deprotection and the importance of a free carboxylate. Tetrahedron Lett. 49(49):6962–6964. 10.1016/j.tetlet.2008.09.027

Tulipano G. 2020. Role of bioactive peptide sequences in the potential impact of dairy protein intake on metabolic health. Int J Mol Sci. 21(22):8881.

Tullberg M., Grøtli M., and Luthman K. 2006. Efficient synthesis of 2,5-diketopiperazines using microwave-assisted heating. Tetrahedron. 62(31):7484–7491. 10.1016/j.tet.2006.05.010

Turkez H., Cacciatore I., Arslan M.E., Fornasari E., Marinelli L., Stefano A.Di and Mardinoglu A. 2020. Histidyl-proline diketopiperazine isomers as multipotent anti-Alzheimer drug candidates. Biomolecules. 10(5):737.

Ueda Y., Yonemitsu M., Tsubuku T., Sakaguchi M., Ueda Y., Yonemitsu M., Tsubuku T., and Sakaguchi M. 2014. Flavor characteristics of glutathione in raw and cooked foodstuffs. Biosci Biotechnol Biochem. 16(12):1977–1980. 10.1271/bbb.61.1977

van der Merwe E., Huang D., Peterson D., Kilian G., Milne P.J., Van de Venter M., and Frost C. 2008. The synthesis and anticancer activity of selected diketopiperazines. Peptides. 29(8):1305–1311. 10.1016/j.peptides.2008.03.010

Wahyu S.W., and Sonja B. 2023. Natural and engineered cyclodipeptides: biosynthesis, chemical diversity, and engineering strategies for diversification and high-yield bioproduction. Engg Microbiol. 3(1):1–18. 10.1016/j.engmic.2022.100067

Wang D., Zhan Y., Cai D., Li X., Wang Q., and Chen S. 2018. Regulation of the synthesis and secretion of the iron chelator cyclodipeptide pulcherriminic acid in Bacillus licheniformis. Appl Environ Microbiol. 84(13):1–14. 10.1128/AEM.00262-18

Winyakul C., Phutdhawong W., Tamdee P., Sirirak J., Taechowisan T., and Phutdhawong W.S. 2022. 2,5-Diketopiperazine derivatives as potential anti-influenza (H5N2) agents: synthesis, biological evaluation, and molecular docking study. Molecules. 27(13):1–17. 10.3390/molecules27134200

Xiao Z., Cui Y.J., Bai S.S., Yang Z.J., Miao-Cai>, Megrous S., Aziz T., Sarwar A., Li D., Yang Z.N. (2021. Antioxidant Activity of Novel Casein-Derived Peptides with Microbial Proteases as Characterized via Keap1-Nrf2 Pathway in HepG2 Cells. J Microbiol Biotechnol. 31(8):1163-1174. 10.4014/jmb.2104.04013

Wong F.C., Xiao J., Wang S., Ee K.Y., and Chai T.T. 2020. Advances on the antioxidant peptides from edible plant sources. Trends Food Sci Technol. 99(January):44–57. 10.1016/j.tifs.2020.02.012

Yamamoto K., Hayashi M., Murakami Y., Araki Y., Otsuka Y., Kashiwagi T., Shimamura T., and Ukeda H. 2016. Development of LC-MS/MS analysis of cyclic dipeptides and its application to tea extract. Biosci Biotechnol Biochem. 80(1):172–177. 10.1080/09168451.2015.1075865

Yang G., Tang Y., Liu X., Wang L., Qin L., Li D., Shen X., Kong C., Zhai W., Fodjo E.K., et al. 2024. Determination of free glycidol and total free monochloropropanediol in fish and krill oil with simple aqueous derivatization and high-performance liquid chromatography–tandem mass spectrometry. Foods. 13(15):2340. 10.3390/foods13152340

Yao T., Liu J., Liu Z., Li T., Li H., Che Q., Zhu T., Li D., Gu Q., and Li W. 2018. Genome mining of cyclodipeptide synthases unravels unusual tRNA-dependent diketopiperazine-terpene biosynthetic machinery. Nature Commun. 9(1):1–12. 10.1038/s41467-018-06411-x

Yin H., Takada K., Kumar A., Hirayama T., and Kaneko T. 2021. Synthesis and solvent-controlled self-assembly of diketopiperazine-based polyamides from aspartame. RSC Adv. 11(11):5938–5946. 10.1039/d0ra10086b

Yotmanee S., Oruna-concha M.J., and Parker J.K. 2018. Influence of the brewing process and degree of milling on the taste characteristics of pigmented rice wine. Flavour Sci. 155–158. 10.3217/978-3-85125-593-5-34

Yuan S., Yong X., Zhao T., Li Y., and Liu J. 2020. Cyclic dipeptides from lactic acid bacteria inhibit the proliferation of pathogenic fungi. Molecules. 25(23):5611.

Yusuf H., Satria D., Suryawati S., and Fahriani M. 2020. Combination therapy of eurycomanone and doxorubicin as anticancer on T47D and MCF-7 cell lines. Syst Rev Pharm. 11(10):335–341. 10.31838/srp.2020.10.55

Zhang J., Wang X., Li H., Chen C., and Liu X. 2022. Immunomodulatory effects of chicken broth and histidine dipeptides on the cyclophosphamide-induced immunosuppression mouse model. Nutrients. 14(21):4491. 10.3390/nu14214491

Zhao Z., Sugimachi M., Yoshizaki Y., Yin X., Han X.-L., Okutsu K., Futagami T., Tamaki H., Takamine K. 2021b. Correlation between key aroma and manufacturing processes of rice-flavor baijiu and awamori, Chinese and Japanese traditional liquors. Food Biosci. 44:101375. 10.1016/j.fbio.2021.101375

Zhao K., Xing R., and Yan X. 2021a. Cyclic dipeptides: biological activities and self-assembled materials. Peptide Sci. 113(2). 10.1002/pep2.24202

Zhou R. 2016. Elucidating the role of low molecular weight peptides as Maillard reactant flavor precursors in chicken meat. Revista CENIC. Ciencias Biológicas. 152(3).

Zhou R., Grant J., Goldberg E.M., Ryland D., and Aliani M. 2019. Investigation of low molecular weight peptides (<1 kDa) in chicken meat and their contribution to meat flavor formation. J Sci Food Agric. 99(4):1728–1739. 10.1002/jsfa.9362

Ziganshin S.A., Gerasimov A.V, Klimovitskii A.E., Khayarov K.R., Mukhametzyanov T.A., and Gorbatchuk V.V. 2019. Thermally induced cyclization of L-isoleucyl-L-alanine in solid state: effect of dipeptide structure on reaction temperature and self-assembly. J Pep Sci. 25(e3177):1–11. 10.1002/psc.3177

Ziganshin M.A., Safiullina A.S., Gerasimov A.V., Sufia A., Klimovitskii A.E., Khayarov K.R., and Gorbatchuk V.V. 2017. Thermally induced self-assembly and cyclization of l-leucyl-l-leucine in solid state. J. Phys. Chem. B. 121(36):8603–8610. 10.1021/acs.jpcb.7b06759