Physicochemical and functional properties of extruded wheat bran dietary fiber: Effects on slow transit constipation
Main Article Content
Keywords
constipation; extrusion; functional characteristics; wheat bran dietary fiber
Abstract
This study investigated wheat bran dietary fiber (WBDF) using the twin-screw extrusion method, with wheat bran as the primary raw material. The research examined the physicochemical properties, cholesterol and sodium cholate adsorption capacity, thermogravimetric analysis, X-ray diffraction, and functional characteristics. Animal experiments were conducted to assess its impact on improving constipation. Results indicated that extru-sion-modified WBDF (E-WBDF) exhibited higher water-holding capacity (WHC), oil-holding capacity (OHC), water swelling capacity (WSC), and stronger cholesterol and sodium cholate adsorption capacities (CAC and SCAC). Additionally, E-WBDF showed greater DPPH and ABTS scavenging activities compared to WBDF. In mouse models of slow transit constipation, both WBDF and E-WBDF significantly alleviated constipation, with E-WBDF demonstrating superior efficacy. These findings highlight that E-WBDF could serve as a promising functional food additive to enhance intestinal function.
References
Bharucha, A.E. (2007). Constipation. Best Practice & Research Clinical Gastroenterology, 21(5), 709–731. https://doi.org/10.1016/j.bpg.2007.07.001
Brouns, F., van Rooy, G., Shewry, P., Rustgi, S., & Jonkers, D. (2019). Adverse reactions to wheat or wheat components. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1437–1452. https://doi.org/10.1111/1541-4337.12475
Cao, J.H., Wang, K., Li, N.X., Zhang, L., Qin, L., He, Y., Wang, J., Qu, C., & Miao, J. (2023). Soluble dietary fiber and cellulose from Saccharina japonica by-product ameliorate loperamide-induced constipation via modulating enteric neurotransmitters, short-chain fatty acids and gut microbiota. International Journal of Biological Macromolecules, 226, 1319–1331. https://doi.org/10.1016/j.ijbiomac.2022.11.243
Cheng, W., Sun, Y.J., Fan, M.C., Li, Y., Wang, L., & Qian, H.F. (2022). Wheat bran, as the resource of dietary fiber: a review. Critical Reviews in Food Science and Nutrition, 62, 7269–7281. https://doi.org/10.1080/10408398.2021.1913399
DeVries, J.W. (2003). On defining dietary fibre. Proceedings of the Nutrition Society, 62, 37–43. https://doi.org/10.1079/PNS2002234
Díaz-Rubio, M.E., Pérez-Jiménez, J., & Saura-Calixto, F. (2009). Dietary fiber and antioxidant capacity in Fucus vesiculosus products. International Journal of Food Science and Nutrition, 60(Suppl. 23–34. https://doi.org/10.1080/09637480802189643
Dong, J.L., Wang, L., Lü, J., Zhu, Y.Y., & Shen, R.L. (2019). Structural, antioxidant and adsorption properties of dietary fiber from foxtail millet (Setaria italica) bran. Journal of the Science of Food and Agriculture, 99, 3886–3894. https://doi.org/10.1002/jsfa.9611
Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chemistry, 124, 411–421. https://doi.org/10.1016/j.foodchem.2010.06.077
Ge, X. L., Tian, H. L., Ding, C., Gu, L., Wei, Y., Gong, J., Zhu, W., Li, N., & Li, J. (2016). Fecal microbiota transplantation in combination with soluble dietary fiber for treatment of slow transit constipation: a pilot study. Archives of Medical Research, 47, 236–242. https://doi.org/10.1016/j.arcmed.2016.06.005
He, Y., Wang, B., Wen, L., Wang, F., Yu, H., Chen, D., Su, X., & Zhang, C. (2022). Effects of dietary fiber on human health. Food Science & Human Wellness, 11, 1–10. https://doi.org/10.1016/j.fshw.2021.07.001
Hu, Y., Wang, L., & Li, Z. (2018). Superheated steam treatment on wheat bran: enzymes inactivation and nutritional attributes retention. LWT, 91, 446–452. https://doi.org/10.1016/j.lwt.2018.01.086
Kahlon, T. S., Smith, G. E., & Shao, Q. (2005). In vitro binding of bile acids by kidney bean (Phaseolus vulgaris), black gram (Vigna mungo), bengal gram (Cicer arietinum) and moth bean (Phaseolus aconitifolins). Food Chemistry, 90, 241–246. https://doi.org/10.1016/j.foodchem.2004.03.046
Lai, H., Li, Y., He, Y., Chen, F., Mi, B., Li, J., Xie, J., Ma, G., Yang, J., Xu, K., Liao, X., Yin, Y., Liang, J., Kong, L., Wang, X., Li, Z., Shen, Y., Dang, S., Zhang, L., Wu, Q., Zeng, L., Shi, L., Zhang, X., Tian, T., & Liu, X. (2023). Effects of dietary fibers or probiotics on functional constipation symptoms and roles of gut microbiota: a double-blinded randomized placebo trial. Gut Microbes, 15, 2197837. https://doi.org/10.1080/19490976.2023.2197837
Li, M.X., Liu, Y.X., Yang, G., Sun, L., Song, X., Chen, Q., Bao, Y., Luo, T., & Wang, J. (2022). Microstructure, physicochemical properties, and adsorption capacity of deoiled red raspberry pomace and its total dietary fiber. LWT, 153, 112478. https://doi.org/10.1016/j.lwt.2021.112478
Liu, X., Suo, K.K., Wang, P., Li, X., Hao, L., Zhu, J., Yi, J., Kang, Q., Huang, J., & Lu, J. (2021). Modification of wheat bran insoluble and soluble dietary fibers with snail enzyme. Food Science and Human Wellness, 10, 356–361. https://doi.org/10.1016/j.fshw.2021.02.027
Long, D., Ye, F., & Zhao, G. (2014). Optimization and characterization of wheat bran modified by in situ enhanced CO2 blasting extrusion. LWT - Food Science and Technology, 59, 605–611. https://doi.org/10.1016/j.lwt.2014.07.017
Luo, X., Wang, Q., Zheng, B., Lin, L., Chen, B., Zheng, Y., & Xiao, J. (2017). Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food and Chemical Toxicology, 109, 1003–1009. https://doi.org/10.1016/j.fct.2017.02.029
Ma, M.M., & Mu, T.H. (2016). Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin. Food Chemistry, 194, 237–246. https://doi.org/10.1016/j.foodchem.2015.07.095
Ma, Q., Yu, Y., Zhou, Z., Wang, L., & Cao, R. (2023). Effects of different treatments on composition, physicochemical and biological properties of soluble dietary fiber in buckwheat bran. Food Bioscience, 53, 102517. https://doi.org/10.1016/j.fbio.2023.102517
Maffei, H.V.L., & Vicentini, A.P. (2011). Prospective evaluation of dietary treatment in childhood constipation: high dietary fiber and wheat bran intake are associated with constipation amelioration. Journal of Pediatric Gastroenterology and Nutrition, 52(1), 55–59. https://doi.org/10.1097/MPG.0b013e3181e2c6e2
Nawrocka, A., Szymańska-Chargot, M., Miś, A., Wilczewska, A.Z., & Markiewicz, K.H. (2017). Aggregation of gluten proteins in model dough after fibre polysaccharide addition. Food Chemistry, 231, 51–60. https://doi.org/10.1016/j.foodchem.2017.03.117
Oh, H., Kim, H., Lee, D.H., Lee, A., Giovannucci, E.L., Kang, S.S., & Keum, N. (2019). Different dietary fibre sources and risks of colorectal cancer and adenoma: a dose–response meta-analysis of prospective studies. British Journal of Nutrition, 122(6), 605–615. https://doi.org/10.1017/S0007114519001454
Orozco-Angelino, X., Espinosa-Ramírez, J., & Serna-Saldívar, S.O. (2023). Extrusion as a tool to enhance the nutritional and bioactive potential of cereal and legume by-products. Food Research International, 169, 112889. https://doi.org/10.1016/j.foodres.2023.112889
Prückler, M., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S., Haas, C., Schmid, E., & Kneifel, W. (2014). Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT - Food Science and Technology, 56, 211–221. https://doi.org/10.1016/j.lwt.2013.12.004.
Qi, J., Li, Y., Masamba, K.G., Shoemaker, C.F., Zhong, F., Majeed, H., & Ma, J. (2016). The effect of chemical treatment on the in vitro hypoglycemic properties of rice bran insoluble dietary fiber. Food Hydrocolloids, 52, 699–706. https://doi.org/10.1016/j.foodhyd.2015.08.008
Ramos-Enríquez, J.R., Ramírez-Wong, B., Robles-Sánchez, R.M., Robles-Zepeda, R.E., González-Aguilar, G.A., & Gutiérrez-Dorado, R. (2018). Effect of extrusion conditions and the optimization of phenolic compound content and antioxidant activity of wheat bran using response surface methodology. Plant Foods for Human Nutrition, 73(3), 228–234. https://doi.org/10.1007/s11130-018-0679-9
Sangnark, A., & Noomhorm, A. (2003). Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food Chemistry, 80(2), 221–229. https://doi.org/10.1016/S0308-8146(02)00257-1
Segal, L., Creely, J.J., Martin, A.E., & Conrad, C.M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786–794. https://doi.org/10.1177/004051755902901003
Solah, V.A., Kerr, D.A., Hunt, W.J., Johnson, S.K., Boushey, C.J., Delp, E.J., Meng, X., Gahler, R.J., James, A.P., Mukhtar, A.S., Fenton, H.K., & Wood, S. (2017). Effect of fibre supplementation on body weight and composition, frequency of eating and dietary choice in overweight individuals. Nutrients, 9, 149. https://doi.org/10.3390/nu9020149
Sui, W.J., Xie, X., Liu, R., Wu, T., & Zhang, M. (2018). Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough. Food Hydrocolloids, 84, 571–580. https://doi.org/10.1016/j.foodhyd.2018.06.027
Taladrid, D., Rebollo-Hernanz, M., Martin-Cabrejas, M.A., Moreno-Arribas, M.V., & Bartolomé, B. (2023). Grape pomace as a cardiometabolic health-promoting ingredient: activity in the intestinal environment. Antioxidants (Basel), 12, 979. https://doi.org/10.3390/antiox12040979
Threapleton, D.E., Greenwood, D.C., Evans, C.E.L., Cleghorn, C.L., Nykjaer, C., Woodhead, C., Cade, J.E., Gale, C.P., & Burley, V.J. (2013). Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ, 347, f6879. https://doi.org/10.1136/bmj.f6879
Wang, L., Xie, S., Jiang, X., Xu, C., Wang, Y., Feng, J., & Yang, B. (2023). Therapeutic effects of Bombax ceiba flower aqueous extracts against loperamide-induced constipation in mice. Pharmaceutical Biology, 61, 125–134. https://doi.org/10.1080/13880209.2022.2157841
Wang, T., Sun, X., Zhou, Z., & Chen, G. (2012). Effects of microfluidization process on physicochemical properties of wheat bran. Food Research International, 48(2), 742–747. https://doi.org/10.1016/j.foodres.2012.06.015
Yan, J., Hu, J., Yang, R., & Zhao, W. (2018). A new nanofibrillated and hydrophobic grafted dietary fibre derived from bamboo leaves: enhanced physicochemical properties and real adsorption capacity of oil. International Journal of Food Science & Technology, 53(10), 2394–2404. https://doi.org/10.1111/ijfs.13832
Ye, G.D., Wu, Y.N., Wang, L.P., Tan, B., Shen, W., Li, X., Liu, Y., Tian, X., & Zhang, D. (2021). Comparison of six modification methods on the chemical composition, functional properties and antioxidant capacity of wheat bran. LWT, 149, 111996. https://doi.org/10.1016/j.lwt.2021.111996
Yu, G., Bei, J., Zhao, J., Li, Q., & Cheng, C. (2018). Modification of carrot (Daucus carota Linn. var. sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure. Food Chemistry, 257, 333–340. https://doi.org/10.1016/j.foodchem.2018.03.037
Zhang, J., Choi, Y.S., Yoo, C.G., Kim, T.H., Brown, R.C., & Shanks, B.H. (2015). Cellulose-hemicellulose and cellulose-lignin interactions during fast pyrolysis. ACS Sustainable Chemistry & Engineering, 3(2), 293–301. https://doi.org/10.1021/sc500664h
Zhang, S., Jia, X., Xu, L., Xue, Y., Pan, Q., Shen, W., & Wang, Z. (2022). Effect of extrusion and semi-solid enzymatic hydrolysis modifications on the quality of wheat bran and steamed bread containing bran. Journal of Cereal Science, 108, 103577. https://doi.org/10.1016/j.jcs.2022.103577
Zhang, X.Y., Tian, H.L., Gu, L.L., Nie, Y., Ding, C., Ge, X., Yang, B., Gong, J., & Li, N. (2018). Long-term follow-up of the effects of fecal microbiota transplantation in combination with soluble dietary fiber as a therapeutic regimen in slow transit constipation. Science China Life Sciences, 61(6), 779–786. https://doi.org/10.1007/s11427-017-9229-1
Zheng, Y.J., Wang, X.Y., Tian, H.L., Li, Y., Shi, P.Q., Guo, W.Y., & Zhu, Q.Q. (2021). Effect of four modification methods on adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Research International, 147, 110565. https://doi.org/10.1016/j.foodres.2021.110565