N-acetylcysteine as a promising treatment for COVID-19: A comprehensive meta-analysis of systemic manifestations and clinical outcomes

Main Article Content

Helmy S. Saleh
Ahmed B. Zaid
Shaimaa K. Almahdy
Alshimaa M. Elmalawany
Ahmed Abdeen
Ilhaam Alsaati
Samah F. Ibrahim

Keywords

acetylcysteine, COVID-19, glutathione, NAC, pandemics, thiol

Abstract

The COVID-19 pandemic presents systemic disorders, primarily affecting respiratory and cardiovascular systems. N-acetylcysteine (NAC) possesses antioxidative, anti-inflammatory, and immune-modulating properties, suggest-ing a potential therapy against COVID-19. In the current study, a meta-analysis was conducted to investigate the effectiveness of NAC supplementation against COVID-19. A literature search was conducted from April 2019 to December 2023 using Rev-Man 5.3 incorporating 14 studies with 20,980 participants. Results revealed significant differences in total and native thiol, and hydrogen sulfides in COVID-19 patients. NAC-treated patients exhibited significant reduction in C-reactive protein and D-dimer levels, along with higher pO2/FiO2 ratios, minimal stay in hospital, and lower mortalities supporting the efficacy of NAC toward COVID-19.

Abstract 134 | PDF Downloads 81 HTML Downloads 0 XML Downloads 13

References

de Alencar, J.C.G., Moreira, C.D.L., Müller, A.D., Chaves, C.E., Fukuhara, M.A., da Silva, E.A., et al., 2021. Double-blind, randomized, placebo-controlled trial with N-acetylcysteine for treatment of severe acute respiratory syndrome caused by coronavirus disease 2019 (COVID-19). Clinical Infectious Diseases. 72(11): e736–e741.10.1093/cid/ciaa1443

Assimakopoulos, S.F., and Marangos, M., 2020. N-acetyl-cysteine may prevent COVID-19-associated cytokine storm and acute respiratory distress syndrome. Medical Hypotheses. 140: 109778. 10.1016/j.mehy.2020.109778

Avdeev, S.N., Gaynitdinova, V.V., Merzhoeva, Z.M., and Berikkhanov, Z.G., 2021. N-acetylcysteine for the treatment of COVID-19 among hospitalized patients. Journal of Infection. 84(1): 94–118. 10.1016/j.jinf.2021.06.023

Aykac, K., Ozsurekci, Y., Yayla, B.C.C., Gurlevik, S.L., Oygar, P.D., Bolu, N.B., et al., 2021. Oxidant and antioxidant balance in patients with COVID-19. 56: 2803–2810. 10.1002/ppul.25549

Blasi, F., Page, C., Rossolini, G.M., Pallecchi, L., Matera, M.G., Rogliani, P., et al., 2016. The effect of N-acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respiratory Medicine. 117: 190–197. 10.1093/cid/ciaa1443

Bourgonje, A.R., Offringa, A.K., van Eijk, L.E., Abdulle, A.E., Hillebrands, J.-L., van der Voort, P.H., et al., 2021: N-acetylcysteine and hydrogen sulfide in coronavirus disease 2019. 35: 1207–1225. 10.1089/ars.2020.8247

Çakırca, G., Damar Çakırca, T., Üstünel, M., Torun, A., and Koyuncu, I., 2021. Thiol level and total oxidant/antioxidant status in patients with COVID-19 infection. Irish Journal of Medical Science. 1971: 1–6. 10.1007/s11845-021-02743-8

Cazzola, M., Rogliani, P., Salvi, S.S., Ora, J., and Matera, M.G.J.L., 2021. Use of thiols in the treatment of COVID-19: Current evidence. 199: 335–343. 10.1007/s00408-021-00465-3

Chen, B., Raja, K., Pierre-Louis, F., Patel, M., Patel, R., Kang, S., et al., 2023. Intravenous N-acetylcysteine in management of COVID-19: A case series. Journal of Pharmacy Practice. 36: 1008–1014. 10.1177/08971900221080283

Cruz, M.A., Handin, R., and Wise, R.J., 1993. The interaction of the von Willebrand factor-A1 domain with platelet glycoprotein Ib/IX. The role of glycosylation and disulfide bonding in a monomeric recombinant A1 domain protein. The Journal of Biological Chemistry. 268: 21238–21245. 10.1016/S0021-9258(19)36916-9

Dai, J., Teng, X., Jin, S., and Wu, Y., 2021. The antiviral roles of hydrogen sulfide by blocking the interaction between SARS-CoV-2 and its potential cell surface receptors. Oxidative Medicine and Cellular Longevity. 2021(1): 7866992. 10.1155/2021/7866992

Egger, M., Smith, G.D., Schneider, M., and Minder, C.J.B., 1997. Bias in meta-analysis detected by a simple, graphical test. 315: 629–634. 10.1136/bmj.315.7109.629

Faverio, P., Rebora, P., Rossi, E., Del Giudice, S., Montanelli, F., Garzillo, L., et al., 2022. Impact of N-acetyl-l-cysteine on SARS-CoV-2 pneumonia and its sequelae: Results from a large cohort study. ERJ Open Research. 8(1): 542–2021. 10.1183/23120541.00542-2021

Federici, A., Berkowitz, Scott, Zimmerman, T., Mannucci, P., 1993. Proteolysis of von Willebrand factor after thrombolytic therapy in patients with acute myocardial infarction. Blood. 79: 38-44. 10.1182/blood.V79.1.38.38

Gaynitdinova, V., Avdeev, S., Merzhoeva, Z., Berikkhanov, Z., Medvedeva, I., and Gorbacheva, T., 2021. N-acetylcysteine as a part of complex treatment of moderate COVID-associated pneumonia. Russian Pulmonology Journal. 31(1): 21–29. 10.18093/0869-0189-2021-31-1-21-29

Gorini, F., Del Turco, S., Sabatino, L., Gaggini, M., and Vassalle, C., 2021. H2S as a bridge linking inflammation, oxidative stress and endothelial biology: A possible defense in the fight against SARS-CoV-2 infection? Biomedicines. 9(9): 1107. 10.3390/biomedicines9091107

Ibrahim, H., Perl, A., Smith, D., Lewis, T., Kon, Z., Goldenberg, R., et al., 2020. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clinical Immunology. 219: 108544. 10.1016/j.clim.2020.108544

Iciek, M., Bilska-Wilkosz, A., Kozdrowicki, M., and Górny, M.J.A., 2022. Reactive sulfur compounds in the fight against COVID-19. Antioxidants. 11: 1053. 10.3390/antiox11061053

Izquierdo, J.L., Soriano, J.B., González, Y., Lumbreras, S., Ancochea, J., Echeverry, C., et al., 2022. Use of N-Acetylcysteine at high doses as an oral treatment for patients hospitalized with COVID-19. Science Progress. 105(1): 368504221074574. 10.1177/00368504221074574

Izquierdo-Alonso, J.L., Pérez-Rial, S., Rivera, C.G., and Peces-Barba, G., 2022. N-acetylcysteine for prevention and treatment of COVID-19: Current state of evidence and future directions. Journal of Infection and Public Health. 15: 1477–1483. 10.1016/j.jiph.2022.11.009

Jasim, S.A., Mahdi, R.S., Bokov, D.O., Najm, M.A., Sobirova, G.N., Bafoyeva, Z.O., et al., 2022. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. Journal of Medical Virology. 94: 5128–5148. 10.1002/jmv.28000

Kalem, A.K., Kayaaslan, B., Neselioglu, S., Eser, F., Hasanoglu, I., Aypak, A., et al., 2021. A useful and sensitive marker in the prediction of COVID-19 and disease severity: Thiol. Free Radical Biology and Medicine. 166: 11–17. 10.1016/j.freeradbiomed.2021.02.009

Kanukula, R., Page, M., Turner, S., and McKenzie, J.E., 2024. Identification of application and interpretation errors that can occur in pairwise meta-analyses in systematic reviews of interventions: A systematic review. Journal of Clinical Epidemiology. 170: 111331. 10.1016/j.jclinepi.2024.111331

Khezri, M.R., Moloodsouri, D., Hodaei, D., and Ghasemnejad-Berenji, M., 2022. Therapeutic potential of loureirin A against SARS-CoV-2 infection. Phytotherapy Research. 36(8): 3011–3012. 10.1002/ptr.7453

Kim, C.H., Kim, J.H., Lee, J., Hsu, C.Y., and Ahn, Y.S., 2003. Thiol antioxidant reversal of pyrrolidine dithiocarbamate-induced reciprocal regulation of AP-1 and NF-κB. Biological Chemistry. 384: 143–150. 10.1515/BC.2003.015

Kim, D., Shea, S.M., and Ku, D.N., 2021. Lysis of arterial thrombi by perfusion of N, N’-Diacetyl-L-cystine (DiNAC). PLoSOne. 16(2): e0247496. 10.1371/journal.pone.0247496

Madrid-García, A., Pérez, I., Colomer, J.I., León-Mateos, L., Jover, J.A., Fernández-Gutiérrez, B., et al., 2021. Influence of colchicine prescription in COVID-19-related hospital admissions: A survival analysis. Therapeutic Advances in Musculoskeletal Disease. 13: 1759720X211002684. 10.1177/1759720X211002684

Martinez de Lizarrondo, S., Gakuba, C., Herbig, B.A., Repessé, Y., Ali, C., Denis, C.V., et al., 2017. Potent thrombolytic effect of N-acetylcysteine on arterial thrombi. Cell Communication and Signaling. 136: 646–660. 10.1161/CIRCULATIONAHA.117.027290

McGrath, S., Zhao, X., Steele, R., Thombs, B.D., Benedetti, A., and DEPRESsion Screening Data (DEPRESSD) Collaboration. 2020. Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. Statistical Methods in Medical Research. 29: 2520–2537. 10.1177/0962280219889080

Mete, A.Ö., Koçak, K., Saracaloglu, A., Demiryürek, S., Altınbaş, Ö., and Demiryürek, A.T., 2021. Effects of antiviral drug therapy on dynamic thiol/disulphide homeostasis and nitric oxide levels in COVID-19 patients. European Journal of Pharmacology. 907: 174306. 10.1016/j.ejphar.2021.174306

Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G.; PRISMA Group, 2009. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine. 151: 264–269. 10.1371/journal.pmed.1000097

National Institute of Health (NIH), 2013. Quality assessment of systematic reviews and meta-analyses. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools

Pons, S., Fodil, S., Azoulay, E., and Zafrani, L., 2020. The vascular endothelium: The cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Critical Care (London, England). 24(1): 353. 10.1186/s13054-020-03062-7

Ramadhan, F., Putra, N.P.P., Setyawan, U.A., Djajalaksana, S., Listyoko, A.S., and Al Rasyid, H., 2021. The effects of N-acetylcysteine as adjuvant therapy to reduce TNF-Î level and increase SPO2/FIO2 Ratio In Improving Hypoxemia In COVID-19 Patients. Indonesian Journal of Tropical and Infectious Disease. 9(3): 195–203. 10.20473/ijtid.v9i3.30874

Schwalfenberg, G.K., 2021. N-acetylcysteine: A review of clinical usefulness (an old drug with new tricks). Journal of Nutrition and Metabolism. 2021: 9949453. 10.1155/2021/9949453

Sears, S.M., Hewett, S.J., 2021. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Experimental Biology and Medicine (Maywood, NJ). 246: 1069–1083. 10.1177/1535370221989263

Şekeroğlu, M.R., Cokluk, E., Yaylaci, S., Erdem, A.F., Tuncer, F.B., Dheir, H., et al., 2021. Thiol-disulphide homoeostasis in COVID-19: Evaluation of its relationship with complete blood count parameters. Konuralp Medical Journal. 13(S1): 460–467. 10.18521/ktd.917364

Shi, Z., and Puyo, C.A., 2020. N-acetylcysteine to combat COVID-19: An evidence review. Therapeutics and Clinical Risk Management. 16: 1047–1055. 10.2147/TCRM.S273700

Smaga, I., Frankowska, M., and Filip, M., 2021. N-acetylcysteine as a new prominent approach for treating psychiatric disorders. British Journal of Pharmacology. 178: 2569–2594. 10.1111/bph.15456

Taher, A., Lashgari, M., Sedighi, L., Rahimi-Bashar, F., Poorolajal, J., and Mehrpooya, M., 2021. A pilot study on intravenous N-Acetylcysteine treatment in patients with mild-to-moderate COVID19-associated acute respiratory distress syndrome. Pharmacological Reports. 73: 1650–1659. 10.1007/s43440-021-00296-2

Tang, J.W., and Licina, D., 2022. Why has the COVID-19 pandemic generated such global interest from the engineering community? Indoor Air. 32(4): e13027. 10.1111/ina.13027

Walls, A.B., Waagepetersen, H.S., Bak, L.K., Schousboe, A., and Sonnewald, U., 2015. The glutamine–glutamate/GABA cycle: Function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochemical Research. 40: 402–409. 10.1007/s11064-014-1473-1

Zhang, Y., Ding, S., Li, C., Wang, Y., Chen, Z., and Wang, Z., 2017. Effects of N-acetylcysteine treatment in acute respiratory distress syndrome: A meta-analysis. Experimental and Therapeutic Medicine. 14: 2863–2868. 10.3892/etm.2017.4891

Zoofaghari, S., Forghani, M., Dorooshi, G., and Maghami-Mehr, A. 2022. The role of N-acetyl cysteine and some other clinical antidotes in the treatment of patients with COVID-19; review of the current evidence. Immunopathologia Persa. 9(2): e31406. 10.34172/ipp.2022.31406