Assessing the effects of homofermentative Lactiplantibacillus plantarum K25 and heterofermentative Limosilactobacillus fermentum 13-1 on the flavor and functional characteristics of fermented milk analyzed by metabolomics approach
Main Article Content
Keywords
fermented milk, flavor, functional characteristics, Lactoplantibacillus plantarum K25, Limosilactobacillus fermentum 13-1, metabolomics analysis
Abstract
Lactic acid bacteria (LAB) play a significant role in milk fermentation; however, the impact of different LAB fermentation types on the metabolic characteristics of fermented milk remains poorly understood. In this study, homofermentative Lactoplantibacillus plantarum K25 and heterofermentative Limosilactobacillus fermentum 13-1 were utilized in yogurt fermentation to produce fermented milk samples D-Lp and D-Lf, respectively, which were compared to the control yogurt sample (D) in terms of flavor and functional properties. Analysis revealed that strain K25 enhanced the production of milky aroma compounds such as 2,3-butanedione (8.82±1.13 ng/g) and hexanoic acid (28.94±1.39 ng/g), while strain 13-1 led to a decrease in 2,3-butanedione (0 ng/g) and acetoin (0 ng/g) levels along with an increase in the content of both acetic acid (23.58±1.99 ng/g) and ethanol (9.92±0.93 ng/g). Both strains demonstrated potential in reducing the bitterness of fermented milk by decreasing the levels of bitter amino acids and dipeptides in samples. Untargeted metabolomics analysis indicated that strain 13-1 induced more significant metabolic changes in fermented milk compared to strain K25. Both strains influenced various amino acid metabolisms, with strain K25 promoting lysine degradation and strain 13-1 enhancing tyrosine metabolism. Furthermore, an increase in different types of bioactive compounds was observed in different fermented milk samples. This study enhances our understanding of LAB strain metabolism in fermented milk.
References
Aiello, A., Pepe, E., De Luca, L., Pizzolongo, F., and Romano, R. 2022. Preliminary study on kinetics of pyroglutamic acid formation in fermented milk. Int Dairy J. 126:105233. 10.1016/j.idairyj.2021.105233
Aziz T, Hangyu H, Naveed M, Shabbir MA, Sarwar A, Nasbeeb J, Zhennai Y, Alharbi M. (2024a). Genotypic Profiling, Functional Analysis, Cholesterol-Lowering Ability, and Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity of Probiotic Lactiplantibacillus plantarum K25 via Different Approaches. Probiotics Antimicrob Proteins. 1-11. 10.1007/s12602-024-10258-8.
Aziz T, Naveed M, Shabbir MA, Sarwar A, Naseeb J, Zhao L, Yang Z, Cui H, Lin L and Albekairi TH. (2024b) Unveiling the whole genomic features and potential probiotic characteristics of novel Lactiplantibacillus plantarum HMX2. Front. Microbiol. 15:1504625. 10.3389/fmicb.2024.1504625
Aziz, T., Sarwar, A., Naveed, M., Shahzad, M., Aqib Shabbir, M., Dablool, A.S., ud Din, J., Ali Khan, A., Naz, S., Cui, H., and Lin, L. 2022. Bio-molecular analysis of selected food-derived Lactiplantibacillus strains for CLA production reveals possibly a complex mechanism. Food Res Int. 154:111031. 10.1016/j.foodres.2022.111031
Aziz T, Sarwar A, Ud Din J, Al Dalali S, Khan AA, Din ZU, Yang Z. (2021). Biotransformation of linoleic acid into different metabolites by food derived Lactobacillus plantarum 12-3 and in silico characterization of relevant reactions. Food Res Int. 147:110470. 10.1016/j.foodres.2021.110470.
Aziz T, Sarwar A, Fahim M, Al Dalali S, Ud Din J, Pacheco FT, Zhennai Y. (2020). Conversion of linoleic acid to various fatty acid metabolites by Lactobacillus plantarum 13-3 and in silico characterization of the prominent reactions. Journal of Chilean chemical society. 3/2020,4879-4884. 10.4067/s0717-97072020000204879.
Bayram, I., Laze, A., and Decker, E.A. 2023. Synergistic mechanisms of interactions between myricetin or taxifolin with α-tocopherol in oil-in-water emulsions. J Agri Food Chem. 71(24):9490–9500. 10.1021/acs.jafc.3c01226
Botta, C., Franciosa, I., Alessandria, V., Cardenia, V., Cocolin, L., and Ferrocino, I. 2022. Metataxonomic signature of beef burger perishability depends on the meat origin prior grinding. Food Res Int. 156:111103. 10.1016/j.foodres.2022.111103
Cantele, C., Bonciolini, A., Rossi, A.M., Bertolino, M., and Cardenia, V. 2024. Antioxidant properties of alkylresorcinols isolated from wheat bran in oil-in-water emulsions. Food Chem. 464:141659. 10.1016/j.foodchem.2024.141659
Chan, M.Z.A., Lau, H., Lim, S.Y., Li, S.F.Y., and Liu, S.-Q. 2021. Untargeted LC-QTOF-MS/MS based metabolomics approach for revealing bioactive components in probiotic fermented coffee brews. Food Res Int. 149:110656. 10.1016/j.foodres.2021.110656
Chen, K.-Y., Chen, Y.-J., Cheng, C.-J., Jhan, K.-Y., Chiu, C.-H., and Wang, L.-C. 2021. 3-Hydroxybenzaldehyde and 4-hydroxybenzaldehyde enhance survival of mouse astrocytes treated with Angiostrongylus cantonensis young adults excretory/secretory products. Biomed J. 44(6):S258–S266. 10.1016/j.bj.2020.11.008
Chen, J., Lin, K.-C., Prasad, S., and Schmidtke, D.W. 2023. Label-free impedance based acetylcholinesterase enzymatic biosensors for the detection of acetylcholine. Biosens Bioelectron. 235:115340. 10.1016/j.bios.2023.115340
Chi, X., Yang, Q., Su, Y., Zhang, J., Sun, B., and Ai, N. 2024. Improvement of rheological and sensory properties of Lactobacillus helveticus fermented milk by prebiotics. Food Chem X. 23:101679. 10.1016/j.fochx.2024.101679
Diez-Simon, C., Eichelsheim, C., Mumm, R., and Hall, R.D. 2020. Chemical and Sensory characteristics of soy sauce: a review. J Agric Food Chem. 68(42):11612–11630. 10.1021/acs.jafc.0c04274
Du, H., Chen, W., Lei, Y., Li, F., Li, H., Deng, W., and Jiang, G. 2021. Discrimination of authenticity of Fritillariae cirrhosae bulbus based on terahertz spectroscopy and chemometric analysis. Microchem J. 168:106440. 10.1016/j.microc.2021.106440
Ferrocino, I., Bellio, A., Giordano, M., Macori, G., Romano, A., Rantsiou, K., Decastelli, L., Cocolin, L., and Elkins, C.A. 2018. Shotgun metagenomics and volatilome profile of the microbiota of fermented sausages. Appl Environ Microbiol. 84(3):e02120–e02117. 10.1128/AEM.02120-17
Fu, Y., Chen, J., Bak, K.H., and Lametsch, R. 2018. Valorisation of protein hydrolysates from animal by-products: perspectives on bitter taste and debittering methods: a review. Int J Food Sci Technol. 54(4):978–986. 10.1111/ijfs.14037
Gänzle, M.G. 2015. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci. 2:106–117. 10.1016/j.cofs.2015.03.001
Gómez-Torres, N., Ávila, M., Delgado, D., and Garde, S. 2016. Effect of reuterin-producing Lactobacillus reuteri coupled with glycerol on the volatile fraction, odour and aroma of semi-hard ewe milk cheese. Int J Food Microbiol. 232:103–110. 10.1016/j.ijfoodmicro.2016.05.031
Gu, Y., Li, X., Xiao, R., Dudu, O.E., Yang, L., and Ma, Y. 2020. Impact of Lactobacillus paracasei IMC502 in coculture with traditional starters on volatile and non-volatile metabolite profiles in yogurt. Proc Biochem. 99:61–69. 10.1016/j.procbio.2020.07.003
Han, J., Jiang, J., Zhao, X., Zhao, X., Kong, T., Li, P., and Gu, Q. 2024a. Comparative analysis of key precursors and metabolites involved in flavor formation of different rapid-fermented Chinese fish sauces based on untargeted metabolomics analysis. Food Chem. 433:136998. 10.1016/j.foodchem.2023.136998
Han, H., Wang, Y., Han, Z., Wang, B., Fu, C., Zhao, S., Qiao, L., and Yao, H. 2024b. Analysis of sensory characteristics and aroma-active substances of milk from different farms using check-all-that-apply and gas chromatography-mass spectrometry-olfactometry. Food Sci (China). 45(1):143–149. 10.7506/spkx1002-6630-20230228-252
Han, H., Zhang, Z., Yang, Z., Blank, I., Zhong, F., Wang, B., Wang, Y., and Zeng, H. 2024c. A comparative study to determine the key aroma components of yogurt aroma types based on sensomics and flavoromics. Food Chem. 460:140618. 10.1016/j.foodchem.2024.140618
Harper, M.S., Amanda Shen, Z., Barnett, J.F., Krsmanovic, L., Myhre, A., and Delaney, B. 2009. N-acetyl-glutamic acid: evaluation of acute and 28-day repeated dose oral toxicity and genotoxicity. Food Chem Toxicol. 47(11):2723–2729. 10.1016/j.fct.2009.07.036
Innocente, N., Biasutti, M., Rita, F., Brichese, R., Comi, G., and Iacumin, L. 2016. Effect of indigenous Lactobacillus rhamnosus isolated from bovine milk on microbiological characteristics and aromatic profile of traditional yogurt. Food Sci Technol (LWT). 66:158–164. 10.1016/j.lwt.2015.10.031
Isık, S., Dagdemir, E., Tekin, A., and Hayaloglu, A.A. 2023. Metabolite profiling of fermented milks as affected by adjunct cultures during long-term storage. Food Biosci. 56:103344. 10.1016/j.fbio.2023.103344
Jiang, Y., Zhang, M., Zhang, Y., Zulewska, J., and Yang, Z. 2021. Calcium (Ca2+)-regulated exopolysaccharide biosynthesis in probiotic Lactobacillus plantarum K25 as analyzed by an omics approach. J Dairy Sci. 104(3):2693–2708. 10.3168/jds.2020-19237
Joshi, A.N., Chandrakar, A.K., and Wasewar, K.L. 2022. Efficacy of natural oils and conventional chemicals in the physical extraction of 4-hydroxybenzoic acid from aqueous solution. J Indian Chem Soc. 99(8):100636. 10.1016/j.jics.2022.100636
Kang, G.-D., and Kim, D.-H. 2016. Poncirin and its metabolite ponciretin attenuate colitis in mice by inhibiting LPS binding on TLR4 of macrophages and correcting Th17/Treg imbalance. J Ethnopharmacol. 189:175–185. 10.1016/j.jep.2016.05.044
Kim, H.O., and Li-Chan, E.C.Y. 2006. Quantitative structure–activity relationship study of bitter peptides. J Agric Food Chem. 54(26):10102–10111. 10.1021/jf062422j
Lee, J.H., Lee, S.H., Kim, Y.S., and Jeong, C.S. 2009. Protective effects of neohesperidin and poncirin isolated from the fruits of Poncirus trifoliata on potential gastric disease. Phytother Res. 23(12):1748–1753. 10.1002/ptr.2840
Li, S.N., Tang, S.H., Ren, R., Gong, J.X., and Chen, Y.M. 2021. Metabolomic profile of milk fermented with Streptococcus thermophilus cocultured with Bifidobacterium animalis ssp. lactis, Lactiplantibacillus plantarum, or both during storage. J Dairy Sci. 104(8):8493–8505. 10.3168/jds.2021-20270
Liu, B., Li, N., Chen, F., Zhang, J., Sun, X., Xu, L., and Fang, F. 2022a. Review on the release mechanism and debittering technology of bitter peptides from protein hydrolysates. Comp Rev Food Sci Food Safety. 21(6):5153–5170. 10.1111/1541-4337.13050
Liu, W., Pu, X., Sun, J., Shi, X., Cheng, W., and Wang, B. 2022b. Effect of Lactobacillus plantarum on functional characteristics and flavor profile of fermented walnut milk. Food Sci Technol (LWT). 160:113254. 10.1016/j.lwt.2022.113254
Liu, C., Yang, P., Wang, H., and Song, H. 2022c. Identification of odor compounds and odor-active compounds of yogurt using DHS, SPME, SAFE and SBSE/GC-O-MS. Food Sci Technol (LWT). 154:112689. 10.1016/j.lwt.2021.112689
Liu, A., Zhang, H., Liu, T., Gong, P., Wang, Y., Wang, H., Tian, X., Liu, Q., Cui, Q., Xie, X., Zhang, L., and Yi, H. 2022d. Aroma classification and flavor characterization of Streptococcus thermophilus fermented milk by HS-GC-IMS and HS-SPME-GC-TOF/MS. Food Biosci. 49:101832. 10.1016/j.fbio.2022.101832
Loh, Y.C., Oo, C.W., Tew, W.Y., Wen, X., Wei, X., and Yam, M.F. 2022. The predominance of endothelium-derived relaxing factors and beta-adrenergic receptor pathways in strong vasorelaxation induced by 4-hydroxybenzaldehyde in the rat aorta. Biomed Pharmacother. 150:112905. 10.1016/j.biopha.2022.112905
Moon, S.H., Kim, C.R., and Chang, H.C. 2018. Heterofermentative lactic acid bacteria as a starter culture to control kimchi fermentation. Food Sci Technol (LWT). 88:181–188. 10.1016/j.lwt.2017.10.009
Mukisa, I.M., Byaruhanga, Y.B., Muyanja, C., Langsrud, T., and Narvhus, J.A. 2017. Production of organic flavor compounds by dominant lactic acid bacteria and yeasts from Obushera, a traditional sorghum malt fermented beverage. Food Sci Nutr. 5(3):702–712. 10.1002/fsn3.450
Naveed M, Ishfaq H, Rehman SU, Javed A, Waseem M, Makhdoom SI, Aziz T, Alharbi M, Alshammari A, Alasmari AF. (2023). GC-MS profiling of Bacillus spp. metabolites with an in vitro biological activity assessment and computational analysis of their impact on epithelial glioblastoma cancer genes. Front Chem. 5;11:1287599. 10.3389/fchem.2023.1287599
Naveed M, Jamil H, Aziz T, Makhdoom SI, Sarwar A, Nasbeeb J, Zhennai Y, Alharbi M. (2024). GC–MS analysis of Lactobacillus plantarum YW11 metabolites and its computational analysis on familial pulmonary fibrosis hub genes” Open Chemistry, 22 (1): 20240019. 10.1515/chem-2024-0019
Nemati, V., Hashempour-baltork, F., Mirza Alizadeh, A., and Varzakas, T. 2023. Production of traditional torba yogurt using lactic acid bacteria isolated from fermented vegetables: microbiological, physicochemical and sensory properties. J Agric Food Res. 14:100850. 10.1016/j.jafr.2023.100850
Pereda, J., Jaramillo, D.P., Quevedo, J.M., Ferragut, V., Guamis, B., and Trujillo, A.J. 2008. Characterization of volatile compounds in ultra-high-pressure homogenized milk. Int Dairy J. 18(8):826–834. 10.1016/j.idairyj.2007.12.002
Qiu, S., Han, H., Zeng, H., and Wang, B. 2024. Machine learning based classification of yogurt aroma types with flavoromics. Food Chem. 438:138008. 10.1016/j.foodchem.2023.138008
Ricciutelli, M., Bartolucci, G., Campana, R., Salucci, S., Benedetti, S., Caprioli, G., Maggi, F., Sagratini, G., Vittori, S., and Lucarini, S. 2020. Quantification of 2-and 3-isopropylmalic acids in forty Italian wines by UHPLC-MS/MS triple quadrupole and evaluation of their antimicrobial, antioxidant activities and biocompatibility. Food Chem. 321:126726. 10.1016/j.foodchem.2020.126726
Rivadeneyra-Domínguez, E., Vázquez-Luna, A., Rodríguez-Landa, J.F., and Díaz-Sobac, R. 2013. Neurotoxic effect of linamarin in rats associated with cassava (Manihot esculenta Crantz) consumption. Food Chem Toxicol. 59:230–235. 10.1016/j.fct.2013.06.004
Rönkä, E., Malinen, E., Saarela, M., Rinta-Koski, M., Aarnikunnas, J., and Palva, A. 2003. Probiotic and milk technological properties of Lactobacillus brevis. Int J Food Microbiol. 83(1):63–74. 10.1016/s0168-1605(02)00315-x
Shori, A.B., Albalawi, A., Al Zahrani, A.J., Al-sulbi, O.S., and Baba, A.S. 2022. Microbial analysis, antioxidant activity, and sensory properties of yoghurt with different starter cultures during storage. Int Dairy J. 126:105267. 10.1016/j.idairyj.2021.105267
Sun, Y., Guo, S., Wu, T., Yang, Y., Shen, T., Ma, X., Kwok, L.-Y., Wang, J., Sun, Z., and Zhang, H. 2023. Bifidobacterium adolescentis B8589-and Lacticaseibacillus paracasei PC-01-co-fermented milk has more γ-aminobutyric acid and short-chain fatty acids than Lacticaseibacillus paracasei PC-01-fermented milk. Food Sci Technol (LWT). 179:114645. 10.1016/j.lwt.2023.114645
Tang, Y., Yu, M., Liu, C., Gao, X., and Song, H. 2024. Sensory-directed characterization of key odor-active compounds in fermented milk. J Food Comp Anal. 126:105904. 10.1016/j.jfca.2023.105904
Tian, H., Shen, Y., Yu, H., He, Y., and Chen, C. 2017. Effects of 4 probiotic strains in coculture with traditional starters on the flavor profile of yogurt. J Food Sci. 82(7):1693–1701. 10.1111/1750-3841.13779
Tian, R., Yu, Z., Yu, L., Tian, F., Zhao, J., Zhang, H., Chen, W., and Zhai, Q. 2022. Effects of Bifidobacterium longum CCFM5871 as an adjunct starter culture on the production of fermented milk. Food Biosci. 50:102167. 10.1016/j.fbio.2022.102167
Tomita, S., Nakamura, T., and Okada, S. 2018. NMR-and GC/MS-based metabolomic characterization of sunki, an unsalted fermented pickle of turnip leaves. Food Chem. 258:25–34. 10.1016/j.foodchem.2018.03.038
Wang, Z., Chen, X., Liu, Q., Zhang, L., Liu, S., Su, Y., Ren, Y., and Yuan, C. 2023a. Untargeted metabolomics analysis based on LC-IM-QTOF-MS for discriminating geographical origin and vintage of Chinese red wine. Food Res Int. 165:112547. 10.1016/j.foodres.2023.112547
Wang, M.-S., Fan, M., Zheng, A.-R., Wei, C.-K., Liu, D.-H., Thaku, K., and Wei, Z.-J. 2023b. Characterization of a fermented dairy, sour cream: lipolysis and the release profile of flavor compounds. Food Chem. 423:136299. 10.1016/j.foodchem.2023.136299
Wang, M.-Q., Ma, W.-J., Shi, J., Zhu, Y., Lin, Z., and Lv, H.-P. 2020a. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC–MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Research Inter. 130:108908. 10.1016/j.foodres.2019.108908
Wang, T., Teng, K., Cao, Y., Shi, W., Xuan, Z., Zhou, J., Zhang, J., and Zhong, J. 2020b. Effects of Lactobacillus hilgardii 60TS-2, with or without homofermentative Lactobacillus plantarum B90, on the aerobic stability, fermentation quality and microbial community dynamics in sugarcane top silage. Bioresour Technol. 312:123600. 10.1016/j.biortech.2020.123600
Wang, T., Wei, G., Chen, F., Ma, Q., and Huang, A. 2023c. Integrated metabolomics and peptidomics to delineate characteristic metabolites in milk fermented with novel Lactiplantibacillus plantarum L3. Food Chem X. 18:100732. 10.1016/j.fochx.2023.100732
Wang, Y., Zeng, H., Qiu, S., Han, H., and Wang, B. 2024. Identification of key aroma compounds and core functional microorganisms associated with aroma formation for Monascus-fermented cheese. Food Chem. 434:137401. 10.1016/j.foodchem.2023.137401
Xia, A., Yang, Y., Guo, M., Lee, Y.-K., Yang, B., Liu, X., Zhao, J., Zhang, H., and Chen, W. 2023. Unveiling of the key pathway in flavor formation in fermented milk of Lactococcus lactis subsp. lactis via genomics and metabolomics. Food Biosci. 56:103159. 10.1016/j.fbio.2023.103159
Xu, D., Ding, W., Ke, W., Li, F., Zhang, P., and Guo, X. 2019. Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri. Front Microbiol. 9:3299. 10.3389/fmicb.2018.03299
Yoon, H.-Y., Yun, S.-I., Kim, B.-Y., Jin, Q., Woo, E.-R., Jeong, S.-Y., and Chung, Y.-S. 2011. Poncirin promotes osteoblast differentiation but inhibits adipocyte differentiation in mesenchymal stem cells. Eur J Pharmacol. 664(1–3):54–59. 10.1016/j.ejphar.2011.04.047
Yousof Ali, M., Zaib, S., Mizanur Rahman, M., Jannat, S., Iqbal, J., Kyu Park, S., and Seog Chang, M. 2020. Poncirin, an orally active flavonoid exerts antidiabetic complications and improves glucose uptake activating PI3K/Akt signaling pathway in insulin resistant C2C12 cells with anti-glycation capacities. Bioorg Chem. 102:104061. 10.1016/j.bioorg.2020.104061
Zha, M., Li, K., Zhang, W., Sun, Z., Kwok, L.-Y., Menghe, B., and Chen, Y. 2021. Untargeted mass spectrometry-based metabolomics approach unveils molecular changes in milk fermented by Lactobacillus plantarum P9. Food Sci Technol (LWT). 140:110759. 10.1016/j.lwt.2020.110759
Zhang, X., Yang, J., Zhang, C., Chi, H., Zhang, C., Zhang, J., Li, T., Liu, L., and Li, A. 2022. Effects of Lactobacillus fermentum HY01 on the quality characteristics and storage stability of yak yogurt. J Dairy Sci. 105(3):2025–2037. 10.3168/jds.2021-20861
Zhang, K., Zhang, T.-T., Guo, R.-R., Ye, Q., Zhao, H.-L., and Huang, X.-H. 2023. The regulation of key flavor of traditional fermented food by microbial metabolism: a review. Food Chem X. 19:100871. 10.1016/j.fochx.2023.100871
Zhang, X., Zhang, C., Xiao, L., Wang, X., Ma, K., Ji, F., Azarpazhooh, E., Ajami, M., Rui, X., and Li, W. 2024. Gas chromatography-mass spectrometry and non-targeted metabolomics analysis reveals the flavor and nutritional metabolic differences of cow’s milk fermented by Lactiplantibacillus plantarum with different phenotypic. Food Biosci. 60:104433. 10.1016/j.fbio.2024.104433
Zhao, H., Ali, U., Ren, Q., Yao, M., Lai, T., Naz, S., Aziz, T., Sameeh, M. Y., Zhang, M., and Yang Z. 2023. Integrated metabolomic analysis of Lactiplantibacillus plantarum NMGL2 reveals its survival and response to combinational cold and acidic conditions during storage of fermented milk. Food Biosci. 54:102833. 10.1016/j.fbio.2023.102833
Zhao, L., Feng, R., Ren, F., and Mao, X. 2018. Addition of buttermilk improves the flavor and volatile compound profiles of low-fat yogurt. Food Sci Technol (LWT). 98:9–17. 10.1016/j.lwt.2018.08.029
Zhao, M., Ma, H., Hou, Y., Li, J., Zou, T., Zhang, D., Wen, R., Li, H., and Song, H. 2022a. Characterization of key odor-active off-flavor compounds in aged pasteurized yogurt by sensory-directed flavor analysis. J Agric Food Chem. 70(45):14439–14447. 10.1021/acs.jafc.2c03409
Zhao, C.J., Schieber, A., and Gänzle, M.G. 2016. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations–a review. Food Res Int. 89:39–47. 10.1016/j.foodres.2016.08.042
Zhao, Y., Zhou, C., Ning, J., Wang, S., Nie, Q., Wang, W., Zhang, J., and Ji, L. 2022b. Effect of fermentation by Pediococcus pentosaceus and Staphylococcus carnosus on the metabolite profile of sausages. Food Res Int. 162:112096. 10.1016/j.foodres.2022.112096
Zhou Z, Sarwar A, Xue R, Hu G, Wu J, Aziz T, Alasmari AF, Yang Z, Yang Z. (2024a). Metabolomics analysis of potential functional metabolites in synbiotic ice cream made with probiotic Saccharomyces cerevisiae var. boulardii CNCM I-745 and prebiotic inulin. Food Chem. 454:139839. 10.1016/j.foodchem.2024.139839
Zhou Z, Sarwar A, Hu G, Zhang J, Hu H, Aziz Tm Wu J, Zhennai Y, Yang Z. (2024b). Identification of potential key metabolites in synbiotic yoghurt made with probiotic Saccharomyces cerevisiae var. boulardii CNCM I-745 and prebiotic inulin by non-targeted metabolomics analysis. Food Chem. 464 (3):141923. 10.1016/j.foodchem.2024.141923
Zhu, Y.-J., Zhou, H.-T., Hu, Y.-H., Tang, J.-Y., Su, M.-X., Guo, Y.-J., Chen, Q.-X., and Liu, B. 2011. Anti-tyrosinase and antimicrobial activities of 2-phenylethanol, 2-phenylacetaldehyde and 2-phenylacetic acid. Food Chem. 124(1):298–302. 10.1016/j.foodchem.2010.06.036
Zotta, T., Ricciardi, A., Ianniello, R.G., Storti, L.V., Glibota, N.A., and Parente, E. 2018. Aerobic and respirative growth of heterofermentative lactic acid bacteria: a screening study. Food Microbiol. 76:117–127. 10.1016/j.fm.2018.02.017