The effects of climate change on wine composition and winemaking processes
Main Article Content
Keywords
Alcohol, Climate change, Grape composition, pH, Volatile organic compounds, Wine composition
Abstract
Climate change strongly affects the wine industry, with impacts on grapevine vegetative behavior, grape primary and secondary metabolites and wine composition. The increase of ethanol is one direct consequence, creating the necessity of new oenological strategies. Nowadays, a challenging objective is the production of wines with reduced or removed alcohol content. Different strategies are developing, divided in pre-fermentative, fermentative and post fermentative. Those are also technologies able to reduce or remove alcohol content through physical methods. This review examines the effects of climate change on wine composition and winemaking processes, considering new technologies used to produce removed or low-alcohol-content wines.
References
Afonso S.M., Inês A., and Vilela A. 2024. Bio-dealcoholization of wines: can yeast make lighter wines? Fermentation. 10(1)36. 10.3390/fermentation10010036
Allamy L., van Leeuwen C., and Pons A. 2023. Impact of harvest date on aroma compound composition of Merlot and Cabernet-Sauvignon must and wine in a context of climate change: a focus on cooked fruit molecular markers. OENO One. 57(3):99–112. 10.20870/oeno-one.2023.57.3.7458
Amerine M., and Winkler A. 1944. Composition and quality of musts and wines of California grapes. Hilgardia. 15:493–675. 10.3733/hilg.v15n06p493
Asproudi A., Petrozziello M., Cavalletto S., and Guidoni S. 2016. Grape aroma precursors in cv. Nebbiolo as affected by vine microclimate. Food Chem. 211:947–956. 10.1016/j.foodchem.2016.05.070
Azzolini M., Fedrizzi B., Tosi E., Finato F., Vagnoli P., Scrinzi C., and Zapparoli G. 2012. Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae mixed cultures on fermentation and aroma of Amarone wine. Eur Food Res Technol. 235:303–313. 10.1007/s00217-012-1762-3
Belancic A., and Agosin E. 2007. Methoxypyrazines in grapes and wines of Vitis vinifera cv. Carmenere. Am J Enol Vitic (AJEV). 58(4):462–469. 10.5344/ajev.2007.58.4.462
Belancic A., Agosin E., Ibacache A., Bordeu E., Baumes R., Razungles A., and Bayonove C. 1997. Influence of sun exposure on the aromatic composition of Chilean Muscat grape cultivars Moscatel de Alejandria and Moscatelrosada. Am J Enol Vitic (AJEV). 48(2):181–186. 10.5344/ajev.1997.48.2.181
Belda I., Ruiz J., Beisert B., Navascués E., Marquina D., Calderón F., Rauhut D., Benito S., and Santos A. 2017. Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations. Int J Food Microbiol. 257:183–191. 10.1016/j.ijfoodmicro.2017.06.028
Belisario-Sánchez Y.Y., Taboada-Rodriguez A., Marin-Iniesta F., and Lopez-Gomez A. 2009. Dealcoholized wines by spinning cone column distillation: phenolic compounds and antioxidant activity measured by the 1,1-diphenyl-2-picrylhydrazyl method. J Agri Food Chem. 57(15):6770–6778. 10.1021/jf900387g
Benito S. 2018. The impact of Torulaspora delbrueckii yeast in wine making. Appl Microbiol Biotech. 102:3081–3094. 10.1007/s00253-018-8849-0
Binati R.L., Junior W.J.L., Luzzini G., Slaghenaufi D., Ugliano M., and Torriani S. 2020. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: a study on Lachancea thermotolerans, Metschnikowia spp., and Starmerella bacillaris strains isolated in Italy. Int J Food Microbiol. 318:108470. 10.1016/j.ijfoodmicro.2019.108470
Bonada M., Jeffery D.W., Petrie P.R., Moran M.A., and Sadras V.O. 2015. Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines. Aust J Grape Wine Res. 21(2):240–253. 10.1111/ajgw.12142
Boulton R. 1980. The general relationship between potassium, sodium and pH in grape juice and wine. Am J Enol Vitic. 31(2):182–186. 10.5344/ajev.1980.31.2.182
Boulton R., Singleton V.L. Bisson L.F., and Kunkee R.E. 1996. Principles and Practice of Winemaking. Chapman and Hall, New York, NY, pp. 146–150. 10.1007/978-1-4615-1781-8
Brouillard R., and Dubois J.E. 1977. Mechanism of the structural transformations of anthocyanins in acidic media. J Am Chem Soc. 99(5):1359–1364. 10.1021/ja00447a012
Bucher T., Deroover K., and Stockley C. 2018. Low-alcohol wine: a narrative review on consumer perception and behaviour. Beverages. 4(4):82. 10.3390/beverages4040082
Cáceres-Mella A., Talaverano M.I., Villalobos-González L., Ribalta-Pizarro C., and Pastenes C. 2017. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins. Plant Physiol Biochem. 117:34–41. 10.1016/j.plaphy.2017.05.015
Chira K., Lorrain B., Ky I., and Teissedre P.L. 2011. Tannin composition of cabernet-sauvignon and merlot grapes from the Bordeaux area for different vintages (2006 to 2009) and comparison to tannin profile of five 2009 vintage mediterranean grapes varieties. Molecules. 16(2):1519–1532. 10.3390/molecules16021519
Contreras A., Hidalgo C., Schmidt S., Henschke P. A., Curtin C., and Varela C. 2014. Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl Microbiol Biotechnol. 99:1885–1895. 10.1128/AEM.03780-13
Corona O., Liguori L., Albanese D., Di Matteo M., Cinquanta L., and Russo P. 2019. Quality and volatile compounds in red wine at different degrees of dealcoholization by membrane process. Eur Food Res Technol. 245:2601–2611. 10.1007/s00217-019-03376-z
Costa J.M., Egipto R., Aguiar F.C., Marques P., Nogales A., and Madeira M. 2023. The role of soil temperature in Mediterranean vineyards in a climate change context. Front Plant Sci. 14:1145137. 10.3389/fpls.2023.1145137
Costantini L., Kappel C.D., Trenti M., Battilana J., Emanuelli F., Sordo M., Moretto M., Camps C., Larcher R., Delrot S., and Grando M.S. 2017. Drawing links from transcriptome to metabolites: the evolution of aroma in the ripening berry of Moscato Bianco (Vitis vinifera L.). Front Plant Sci. 8:780. 10.3389/fpls.2017.00780
Del-Castillo-Alonso M.Á., Diago M.P., Tomás-Las-Heras R., Monforte L., Soriano G., Martínez-Abaigar J., and Núñez-Olivera E. 2016. Effects of ambient solar UV radiation on grapevine leaf physiology and berry phenolic composition along one entire season under Mediterranean field conditions. Plant Physiol Biochem. 109:374–386. 10.1016/j.plaphy.2016.10.018
De Rességuier L., Maryn S., Le Roux R., Petitjean T., Quénol H., and Van Leeuwen C. 2020. Temperature variability at local scale in the Bordeaux area. Relations with environmental factors and impact on vine phenology. Front Plant Sci. 11:515. 10.3389/fpls.2020.00515
Divol B., du Toit M., and Duckitt E. 2012. Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Appl Microbiol Biotechnol. 95:601–613. 10.1007/s00253-012-4186-x
Drappier J., Thibon C., Rabot A., and Geny-Denis L. 2017. Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming. Critl Rev Food Sci Nutr. 59(1):14–30. 10.1080/10408398.2017.1355776
Duchêne E., Butterlin G., and Jaegli N. 2016. Consequences of elevated temperatures during ripening on the biosynthesis of monoterpenols in grape berries. In: Proceeding of Climwine, Sustainable Grape and Wine Production in the Context of Climate Change, Conference: Climwine 2016, Bordeaux-France, April 10–13.
Ebeler S.E. 2001. Analytical chemistry: unlocking the secrets of wine flavor. Food Rev Int. 17(1):45–64. 10.1081/FRI-100000517
Englezos V., Pollon M., Rantsiou K., Ortiz-Julien A., Botto R., Río Segade S., Giacosa S., Rolle L., and Cocolin L. 2019. Saccharomyces cerevisiae-Starmerella bacillaris strains interaction modulates chemical and volatile profile in red wine mixed fermentations. Food Res Int. 122:392–401. 10.1016/j.foodres.2019.03.072
Englezos V., Rantsiou K., Torchio F., Rolle L., Gerbi V., and Cocolin L. 2015. Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: physiological and molecular characterizations. Int J Food Microbiol. 199:33–40. 10.1016/j.ijfoodmicro.2015.01.009
Falcão L., de Revel G., Perello M., Moutsiou A., Sanus M., and Bordignon-Luiz M. 2007. A survey of seasonal temperatures and vineyard altitude influences on 2-methoxy-3-isobutylpyrazine, C13-norisoprenoids and the sensory profile of Brazilian Cabernet Sauvignon wines. J Agric Food Chem. 55(9):3605–3612. 10.1021/jf070185u
Forino M., Picariello L., Rinaldi A., Moio L., and Gambuti A. 2020. How must pH affects the level of red wine phenols. Food Sci Technol (LWT). 129:109546. 10.1016/j.lwt.2020.109546
Gambuti A., Picariello L., Rinaldi A., Forino M., Blaiotta G., Moine V., and Moio L. 2020. New insights into the formation of precipitates of quercetin in Sangiovese wines. J Food Sci Technol. 57:2602–2611. 10.1007/s13197-020-04296-7
Ganichot B. 2002. Evolution de la date des vendanges dans les Côtes du Rhône méridionales. In: Actes de 6emes Recontres Rhodaniennes, Institut Rhodanien, Orange, France, pp. 38–41.
García-Martín N., Perez-Magariño S., Ortega-Heras M., González-Huerta C., Mihnea M., González-Sanjosé M.L., Palacio L., Prádanos P., and Hernández A. 2010. Sugar reduction in musts with nanofiltration membranes to obtain low alcohol-content wines. Sep Purif Technol. 76(2):158–170. 10.1016/j.seppur.2010.10.002
Giacosa S., Segade S.R., Cagnasso E., Caudana A., Rolle L., and Gerbi V. 2019. SO2 in wines: rational use and possible alternatives. In: A. Morata (Ed.) Red Wine Technology. Academic Press, Cambridge, MA, pp. 309–321. 10.1016/B978-0-12-814399-5.00021-9
Goldner M.C., Zamora M.C., Di Leo Lira P., Gianninoto H., and Bandoni A. 2009. Effect of ethanol level in the perception of aroma attributes and the detection of volatile compounds in red wine. J Sens Stud. 24(2):243–257. 10.1111/j.1745-459X.2009.00208.x
Gómez-Plaza E., López-Nicolás J.M., López-Roca J.M., and Martı́nez-Cutillas A. 1999. Dealcoholization of wine. Behaviour of the aroma components during the process. Food Sci Technol (LWT). 32(6):384–386. 10.1006/fstl.1999.0565
Gonçalves F., Ribeiro R., Neves L., Lemperle T., Lança M., Ricardo da Silva J., and Laureano O. 2013. Alcohol reduction in wine by nanofiltration. Some comparisons with reverse osmosis technique. In: Proceedings of the 1st Oenoviti International Symposium—Alcohol Level Reduction in Wine. VIGNE et Vin Publications Internationales, Bordeaux, France, pp. 64–67.
Gouot J.C., Smith J.P., Holzapfel B.P., Walker A.R., and Barril C. 2019. Grape berry flavonoids: a review of their biochemical responses to high and extreme high temperatures. J Exp Bot. 70(2):397–423. 10.1093/jxb/ery392
Harbertson J.F., Mireles M.S., Harwood E.D., Weller K.M., and Ross C.F. 2009. Chemical and sensory effects of saignée, water addition, and extended maceration on high brix must. Am J Enol Vitic. 60(4):450–460. 10.5344/ajev.2009.60.4.450
Heux S., Sablayrolles J. M., Cachon R., Dequin S. 2006. Engineering a Saccharomyces cerevisiae wine yeast that exhibits reduced ethanol production during fermentation under controlled microoxygenation conditions. Applied and Environmental Microbiology, 72(9):5822–5828. 10.1128/AEM.00750-06
Intrigliolo D.S., Pérez D., Risco D., Yeves A., and Castel J.R. 2012. Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrig Sci. 30:339–349. 10.1007/s00271-012-0354-0
Ishmayana S., Learmonth R.P., and Kennedy U.J. 2011. Fermentation performance of the yeast Saccharomyces cerevisiae in media with high sugar concentration. In: Proceedings of the 2nd International Seminar on Chemistry: Chemestry for a Better Future (ISC 2011), University of Southern Queensland, Australia, pp. 379–385
Jones G.V. 2007. Climate change: observations, projections, and general implications for viticulture and wine production. In Whitman College Economics Department working paper, pp. 1–7, Whitman College.
Jones G.V., and Davis R.E. 2000. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic. 51(3):249–261. 10.5344/ajev.2000.51.3.249
Jones G.V., Duchêne E., Tomasi D., Yuste J., Braslavska O., Schultz H., Martinez C., Boso S., Langellier F., Perruchot C., and Guimberteau G. 2005a. Changes in European winegrape phenology and relationships with climate. In: Proceedings of the XIV International GESCO Viticulture Congress, Geisenheim, Germany, pp. 54–61.
Jones G.V., White M.A., Cooper O.R., and Storchmann K. 2005b. Climate change and global wine quality. Clim Change. 73:319–343. 10.1007/s10584-005-4704-2
Keller M. 2010. Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Aust J Grape Wine Res. 16:56–69. 10.1111/j.1755-0238.2009.00077.x
Kontoudakis N., Esteruelas M., Fort F., Canals J.M., and Zamora F. 2011. Use of unripe grapes harvested during cluster thinning as a method for reducing alcohol content and pH of wine. Aust J Grape Wine Res. 17(2):230–238. 10.1111/j.1755-0238.2011.00142.x
Koundouras S., Marinos V., Gkoulioti A., Kotseridis Y., and van Leeuwen C. 2006. Influence of vineyard location and vine water status on fruit maturation of non-irrigated cv Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. J Agric Food Chem. 54:5077–5086. 10.1021/jf0605446
Li X., Ahmad N., Gao Y., Wang Y., Meng X., Duan C., Lu J., and Pan Q. 2024. Norisoprenoid accumulation under genotype and vintage effects in Vitis vinifera L. wine varieties. Horticulturae. 10(9):970. 10.3390/horticulturae10090970
Liguori L., Russo P., Albanese D., and Di Matteo M. 2013. Effect of process parameters on partial dealcoholization of wine by osmotic distillation. Food Bioproc Technol. 6:2514–2524. 10.1007/s11947-012-0856-z
Lorrain B., Chira K., and Teissedre P.L. 2011. Phenolic composition of Merlot and Cabernet-Sauvignon grapes from Bordeaux vineyard for the 2009-vintage: comparison to 2006, 2007 and 2008 vintages. Food Chem. 126(4):1991–1999. 10.1016/j.foodchem.2010.12.062
Makhotkina O., and Kilmartin P.A. 2012. Hydrolysis and formation of volatile esters in New Zealand Sauvignon blanc wine. Food Chem. 135(2):486–493. 10.1016/j.foodchem.2012.05.034
Martínez-Lüscher J., Torres N., Hilbert G., Richard T., Sánchez-Díaz M., Delrot S., Aguirreolea J., Pascual I., and Gomès, E. 2014. Ultraviolet-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape berries. Phytochemistry. 102:106–114. 10.1016/j.phytochem.2014.03.014
Martínez-Moreno A., Martínez-Pérez P., Bautista-Ortín A.B., and Gómez-Plaza E. 2023. Use of unripe grape wine as a tool for reducing alcohol content and improving the quality and oenological characteristics of red wines. OENO One. 57(1):109–119. 10.20870/oeno-one.2023.57.1.7226
Martínez-Pérez M.P., Bautista-Ortín A.B., Pérez-Porras P., Jurado R., and Gómez-Plaza E. 2020. A new approach to the reduction of alcohol content in red wines: the use of high-power ultrasounds. Foods. 9(6):726. 10.3390/foods9060726
Massano L., Fosser G., Gaetani M., and Bois B. 2023. Assessment of climate impact on grape productivity: a new application for bioclimatic indices in Italy. Sci Total Environ. 905:167134. 10.1016/j.scitotenv.2023.167134
Matus J.T. 2016. Transcriptomic and metabolomic networks in the grape berry illustrate that it takes more than flavonoids to fight against ultraviolet radiation. Front Plant Sci. 7:1337. 10.3389/fpls.2016.01337
Mele M.A., Kang H.M., Lee Y.T., and Islam M.Z. 2021. Grape terpenoids: flavor importance, genetic regulation, and future potential. Crit Rev Food Sci Nutr. 61(9):1429–1447. 10.1080/10408398.2020.1760203
Mira H., Guiomar A., Geraldes V., and De Pinho M.N. 2017. Membrane processing of grape must for control of the alcohol content in fermented beverages. J Membr Sci Res. 3:308–312.
Mirabelli-Montan Y.A., Marangon M., Graça A., Mayr Marangon C.M., and Wilkinson K.L. 2021. Techniques for mitigating the effects of smoke taint while maintaining quality in wine production: a review. Molecules. 26:1672. 10.3390/molecules26061672
Mira de Orduna R. 2010. Climate change associated effects on grape and wine quality and production. Food Res Int. 43(7):1844–1855. 10.1016/j.foodres.2010.05.001
Mirás-Avalos J.M., and Intrigliolo D.S. 2017. Grape composition under abiotic constrains: water stress and salinity. Front Plant Sci. 8:851. 10.3389/fpls.2017.00851
Monder H., Maillard M., Chérel I., Zimmermann S.D., Paris N., Cuéllar T., and Gaillard I. 2021. Adjustment of K+ fluxes and grapevine defense in the face of climate change. Int J Mol Sci. 22(19):10398. 10.3390/ijms221910398
Morata A., Loira I., Escott C., del Fresno J.M., Bañuelos M.A., and Suárez-Lepe J.A. 2019. Applications of Metschnikowia pulcherrima in wine biotechnology. Fermentation. 5(3):63. 10.3390/fermentation5030063
Motta S., Guaita M., Petrozziello M., Ciambotti A., Panero L., Solomita M., and Bosso A. 2017. Comparison of the physicochemical and volatile composition of wine fractions obtained by two different dealcoholization techniques. Food Chem. 221:1–10. 10.1016/j.foodchem.2016.10.046
Neethling E., Barbeau G., Bonnefoy C., and Quénol H. 2012. Change in climate and berry composition for grapevine varieties cultivated in the Loire valley. Clim Res. 53(2):89–101. 10.3354/cr01094
Pérez-Coello M.S., González-Viñas M.A., Garcıa-Romero E., Dıaz-Maroto M.C., and Cabezudo M.D. 2003. Influence of storage temperature on the volatile compounds of young white wines. Food Control. 14(5):301–306. 10.1016/S0956-7135(02)00094-4
Petrie P.R., and Sadras V.O. 2008. Advancement of grapevine maturity in Australia between 1993 and 2006: putative causes, magnitude of trends and viticultural consequences. Aust J Grape Wine Res. 14:33–45. 10.1111/j.1755-0238.2008.00005.x
Peyrot des Gachons C., van Leeuwen C., Tominaga T., Soyer J.P., Gaudillere J.P., and Dubourdieu D. 2005. Influence of water and nitrogen deficit on fruit ripening and aroma potential of Vitis vinifera L. cv Sauvignon blanc in field conditions. Sci Wood Agric. 85(1):73–85. 10.1002/jsfa.1919
Piña-Rey A., González-Fernández E., Fernández-González M., Lorenzo M.N., and Rodríguez-Rajo F.J. 2020. Climate change impacts assessment on wine-growing bioclimatic transition areas. Agriculture. 10(12):605. 10.3390/agriculture10120605
Plantevin M., Merpault Y., Lecourt J., Destrac-Irvine A., Dijsktra L., and van Leeuwen, C. 2024. Characterization of varietal effects on the acidity and pH of grape berries for selection of varieties better adapted to climate change. Front Plant Sci. 15:1439114. 10.3389/fpls.2024.1439114
Puglisi C., Ristic R., Saint J., and Wilkinson K. 2022. Evaluation of spinning cone column distillation as a strategy for remediation of smoke taint in juice and wine. Molecules. 27(22):8096. 10.3390/molecules27228096
Ramey D.D., and Ough C.S. 1980. Volatile ester hydrolysis or formation during storage of model solutions and wines. J Agric Food Chem. 28(5):928–934. 10.1021/jf60231a021
Rantsiou K., Dolci P., Giacosa S., Torchio F., Tofalo R., Torriani S., Suzzi G., Rolle L., and Cocolin L. 2012. Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Appl Environ Microbiol. 78(6):1987–1994. 10.1128/AEM.06768-11
Reynolds A.G., and Balint G. 2014. Impact of vineyard management on grape maturity: focus on terpenes, phenolics, and other secondary metabolites. New outlook in viticulture and the impact on wine quality. In: Proceedings of the XX Ves Entretiens Scientifiques Lallem and Mendoza, Argentina, pp. 13–41.
Röcker J., Schmitt M., Pasch L., Ebert K., and Grossmann M. 2016. The use of glucose oxidase and catalase for the enzymatic reduction of the potential ethanol content in wine. Food Chem. 210:660–670. 10.1016/j.foodchem.2016.04.093
Rogiers S.Y., Greer D.H., Liu Y., Baby T., and Xiao Z. 2022. Impact of climate change on grape berry ripening: an assessment of adaptation strategies for the Australian vineyard. Front Plant Sci. 13:1094633. 10.3389/fpls.2022.1094633
Roland A., Schneider R., Razungles A., and Cavelier F. 2011. Varietal thiols in wine: discovery, analysis and applications. Chem Rev. 111(11):7355–7376. 10.1021/cr100205b
Rolle L., Englezos V., Torchio F., Cravero F., Rio Segade S., Rantsiou K., Giacosa S., Gambuti A., and Gerbi V. 2018. Alcohol reduction in red wines by technological and microbiological approaches: a comparative study. Aust J Grape Wine Res. 24:62–74. 10.1111/ajgw.12301
Ruiz J., Kiene F., Belda I., Fracassetti D., Marquina D., Navascués E., Calderón F., Benito A., Rauhut D., Santos A., and Benito S. 2019. Effects on varietal aromas during wine making: a review of the impact of varietal aromas on the flavor of wine. Appl Microbiol Biotechnol. 103:7425–7450. 10.1007/s00253-019-10008-9
Ruiz-Rodriguez A., Fornari T., Hernández E.J., Señorans F.J., and Reglero G. 2010. Thermodynamic modeling of dealcoholization of beverages using supercritical CO2: application to wine samples. J Supercrit Fluids. 52(2):183–188. 10.1016/j.supflu.2009.12.011
Ruiz-Rodríguez A., Fornari T., Jaime L., Vázquez E., Amador B., Nieto J.A., Yuste M., Mercader M., and Reglero G. 2012. Supercritical CO2 extraction applied toward the production of a functional beverage from wine. J Supercrit Fluids. 61:92–100. 10.1016/j.supflu.2011.09.002
Sam F.E., Ma T., Liang Y., Qiang W., Atuna R.A., Amagloh F.K., Morata A., and Han S. 2021a. Comparison between membrane and thermal dealcoholization methods: their impact on the chemical parameters, volatile composition, and sensory characteristics of wines. Membranes. 11(12):957. 10.3390/membranes11120957
Sam F.E., Ma T.Z., Salifu R., Wang J., Jiang Y.M., Zhang B., and Han S.Y. 2021b. Techniques for dealcoholization of wines: their impact on wine phenolic composition, volatile composition, and sensory characteristics. Foods. 10(10):2498. 10.3390/foods10102498
Savoi S., Wong D.C.J., Arapitsas P. Miculan M., Bucchetti B., Peterlunger E., Fait A., Mattivi F., and Castellarin S.D. 2016. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biol. 16:67. 10.1186/s12870-016-0760-1
Schmidtke L.M., Blackman J.W., and Agboola S.O. 2012. Production technologies for reduced alcoholic wines. J Food Sci. 77(1):R25–R41. 10.1111/j.1750-3841.2011.02448.x
Smart R.E., Dick J.K., Gravett I.M., and Fisher B.M. 1990. Canopy management to improve grape yield and wine quality-principles and practices. South Afr J Enol Vitic. 11(1):3–17. 10.21548/11-1-2232
Šuklje K., Zhang X., Antalick G., Clark A.C., Deloire A., and Schmidtke L.M. 2016. Berry shriveling significantly alters Shiraz (Vitis vinifera L.) grape and wine chemical composition. J Agric Food Chem. 64(4):870–880. 10.1021/acs.jafc.5b05158
Sun X., Dang G., Ding X., Shen C., Liu G., Zuo C., Chen X., Xing W., and Jin W. 2020. Production of alcohol-free wine and grape spirit by pervaporation membrane technology. Food Bioprod Proc. 123:262–273. 10.1016/j.fbp.2020.07.006
Takács L., Vatai G., and Korány K. 2007. Production of alcohol free wine by pervaporation. J Food Eng. 78(1):118–125. 10.1016/j.jfoodeng.2005.09.005
Tilloy V., Cadière A., Ehsani M., and Dequin S. 2015. Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae. Int J Food Microbiol. 213:49–58. 10.1016/j.ijfoodmicro.2015.06.027
Török D.F. 2023. Polyphenols and sensory traits in reverse osmosis NoLo wines. J Knowl Learn Sci Technol (Online). 2(1):60–73. 10.60087/jklst.v02.n01.p50
van Leeuwen C., Barbe J.C., Darriet P., Destrac-Irvine A., Gowdy M., Lytra G., Marchal A., Marchand S., Plantevin M., Poitou X., Pons A., and Thibon C. 2022. Aromatic maturity is a cornerstone of terroir expression in red wine. OENO One. 56(2):335–351. 10.20870/oeno-one.2022.56.2.5441
van Leeuwen C., Destrac-Irvine A., Dubernet M., Duchêne E., Gowdy M., Marguerit, E., Pieri P., Parker A., de Rességuier L., and Ollat N. 2019. An update on the impact of climate change in viticulture and potential adaptations. Agronomy. 9(9):514. 10.3390/agronomy9090514
Varela C., Barker A., Tran T., Borneman A., and Curtin C. 2017. Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum. Int J Food Microbiol. 252:1–9. 10.1016/j.ijfoodmicro.2017.04.002
Varela C., Dry P.R., Kutyna D.R., Francis I.L., Henschke P.A., Curtin C.D., and Chambers P.J. 2015. Strategies for reducing alcohol concentration in wine. Aust J Grape Wine Res. 21:670–679. 10.1111/ajgw.12187
Waterhouse A.L., Sacks G.L., and Jeffery D.W. 2024. Understanding Wine Chemistry. John Wiley, Hoboken, NJ. 10.1002/9781394258406
Yildirim H.K., and Darici B. 2020. Alternative methods of sulfur dioxide used in wine production. J Microbiol Biotechnol Food Sci. 9:675–687. 10.15414/jmbfs.2020.9.4.675-687
Zamora F. 2016. Dealcoholised wines and low-alcohol wines. In: Moreno-Arribas, M., and Bartolomé Suáldea, B. (Eds.) Wine Safety, Consumer Preference, and Human Health. Springer, Cham, Switzerland, pp. 163–182. 10.1007/978-3-319-24514-0_8