Vanillic acid promotes keratinocyte migration, proliferation, and angiogenesis
Main Article Content
Keywords
keratinocyte migration, NF-κb pathway, proliferation and angiogenesis, vanillic acid, wound healing
Abstract
Wound healing is a complex, multi-phase process involving the coordinated interaction of various cells and molecules. This study evaluates the effects of vanillic acid (VA) on wound healing using HaCaT cells. The results demonstrate that VA treatment increases the levels of phosphorylated AMPK protein, thereby activating the AMPK pathway. This activation leads to an upregulation of PNCA expression and enhances the proliferation of HaCaT cells. Additionally, VA treatment reduces the expression of Bax and cleaved Caspase-3 while increasing Bcl2 expression, which inhibits apoptosis in HaCaT cells. Furthermore, VA treatment upregulates the expression of MMP-2 and MMP-9, promoting HaCaT cell migration. VA also induces the secretion of FGF, VEGF, and PDGF, which enhances tube formation in HUVECs. In conclusion, VA may have potential therapeutic benefits in wound healing by promoting keratinocyte proliferation, migration, and angiogenesis.
References
Cabral-Pacheco, G.A., Garza-Veloz, I., Castruita-De la Rosa, C., Ramirez-Acuña, J.M., Perez-Romero, B.A., Guerrero-Rodriguez, J.F., Martinez-Avila, N., & Martinez-Fierro, M.L. (2020). The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. International Journal of Molecular Sciences, 21(24), 9739. https://www.mdpi.com/1422-0067/21/24/9739
Dekoninck, S., & Blanpain, C. (2019). Stem cell dynamics, migration and plasticity during wound healing. Nature Cell Biology, 21(1), 18–24. 10.1038/s41556-018-0237-6
Fang, W.-C., & Lan, C.-C. E. (2023). The Epidermal Keratinocyte as a Therapeutic Target for Management of Diabetic Wounds. International Journal of Molecular Sciences, 24(5), 4290. https://www.mdpi.com/1422-0067/24/5/4290
Gong, J., Zhou, S., & Yang, S. (2019). Vanillic Acid Suppresses HIF-1α expression via Inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK pathways in human colon cancer HCT116 cells. International Journal of Molecular Sciences, 20(3). 10.3390/ijms20030465
Gonzalez, A.C., Costa, T.F., Andrade, Z.A., & Medrado, A.R. (2016). Wound healing-a literature review. Anais Brasileiros de Dermatologia, 91(5), 614–620. 10.1590/abd1806-4841.20164741
Hegde, A., Ananthan, A.S.H.P., Kashyap, C., & Ghosh, S. (2021). Wound healing by keratinocytes: a cytoskeletal perspective. Journal of the Indian Institute of Science, 101(1), 73–80. 10.1007/s41745-020-00219-9
Hingorani, D.V., Lippert, C.N., Crisp, J.L., Savariar, E.N., Hasselmann, J.P.C., Kuo, C., Nguyen, Q.T., Tsien, R.Y., Whitney, M.A., & Ellies, L.G. (2018). Impact of MMP-2 and MMP-9 enzyme activity on wound healing, tumor growth and RACPP cleavage. PLoS One, 13(9), e0198464. 10.1371/journal.pone.0198464
Jeong, H.J., Nam, S.Y., Kim, H.Y., Jin, M.H., Kim, M.H., Roh, S.S., & Kim, H.M. (2018, Dec). Anti-allergic inflammatory effect of vanillic acid through regulating thymic stromal lymphopoietin secretion from activated mast cells. Natural Product Research, 32(24), 2945–2949. 10.1080/14786419.2017.1389938
Kaur, J., Gulati, M., Singh, S.K., Kuppusamy, G., Kapoor, B., Mishra, V., Gupta, S., Arshad, M.F., et al. (2022). Discovering multifaceted role of vanillic acid beyond flavours: nutraceutical and therapeutic potential. Trends in Food Science & Technology, 122, 187–200. 10.1016/j.tifs.2022.02.023
Li, W.-D., Li, N.-P., Song, D.-D., Rong, J.-J., Qian, A.-M., & Li, X.-Q. (2017). Metformin inhibits endothelial progenitor cell migration by decreasing matrix metalloproteinases, MMP-2 and MMP-9, via the AMPK/mTOR/autophagy pathway. International Journal of Molecular Medicine, 39(5), 1262–1268. 10.3892/ijmm.2017.2929
Ma, Z., Huang, Z., Zhang, L., Li, X., Xu, B., Xiao, Y., Shi, X., Zhang, H., et al. (2020). Vanillic acid reduces pain-related behavior in knee osteoarthritis rats through the inhibition of NLRP3 inflammasome-related synovitis. Frontiers in Pharmacology, 11, 599022. 10.3389/fphar.2020.599022
Natewong, S., Niwaspragrit, C., Ratanachamnong, P., Samatiwat, P., Namchaiw, P., & Jaisin, Y. (2022). Photo-protective and anti-inflammatory effects of antidesma thwaitesianum müll. arg. fruit extract against UVB-Induced Keratinocyte Cell Damage. Molecules, 27(15). 10.3390/molecules27155034
Oluwole, D.O., Coleman, L., Buchanan, W., Chen, T., La Ragione, R.M., & Liu, L.X. (2022). Antibiotics-free compounds for chronic wound healing. Pharmaceutics, 14(5). 10.3390/pharmaceutics14051021
Pastar, I., Stojadinovic, O., Yin, N.C., Ramirez, H., Nusbaum, A.G., Sawaya, A., Patel, S.B., et al. (2014). Epithelialization in wound healing: a comprehensive review. Advances in Wound Care 3(7), 445–464. 10.1089/wound.2013.0473
Qian, W., Yang, M., Wang, T., Sun, Z., Liu, M., Zhang, J., Zeng, Q., Cai, C., & Li, Y. (2020). Antibacterial mechanism of vanillic acid on physiological, morphological, and biofilm properties of carbapenem-resistant enterobacter hormaechei. Journal of Food Protection, 83(4), 576–583. 10.4315/JFP-19-469
Rakita, A., Nikolić, N., Mildner, M., Matiasek, J., & Elbe-Bürger, A. (2020). Re-epithelialization and immune cell behaviour in an ex vivo human skin model. Scientific Reports, 10(1), 1. 10.1038/s41598-019-56847-4
Rousselle, P., Braye, F., & Dayan, G. (2019). Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies. Advanced Drug Delivery Reviews, 146, 344–365. 10.1016/j.addr.2018.06.019
Salau, V.F., Erukainure, O.L., Ibeji, C.U., Olasehinde, T.A., Koorbanally, N.A., & Islam, M.S. (2020). Vanillin and vanillic acid modulate antioxidant defense system via amelioration of metabolic complications linked to Fe(2+)-induced brain tissues damage. Metabolic Brain Disease, 35(5), 727–738. 10.1007/s11011-020-00545-y
Ullah, R., Ikram, M., Park, T.J., Ahmad, R., Saeed, K., Alam, S.I., Rehman, I.U., Khan, A., Khan, I., Jo, M.G., & Kim, M.O. (2020). Vanillic acid, a bioactive phenolic compound, counteracts lps-induced neurotoxicity by regulating c-Jun N-terminal kinase in mouse brain. International Journal of Molecular Sciences, 22(1). 10.3390/ijms22010361
Vilchinskaya, N.A., Rozhkov, S.V., Turtikova, O.V., Mirzoev, T.M., & Shenkman, B.S. (2023). AMPK phosphorylation impacts apoptosis in differentiating myoblasts isolated from atrophied rat soleus muscle. Cells, 12(6), 920. https://www.mdpi.com/2073-4409/12/6/920
Yao, X., Jiao, S., Qin, M., Hu, W., Yi, B., & Liu, D. (2020). Vanillic acid alleviates acute myocardial hypoxia/reoxygenation injury by inhibiting oxidative stress. Oxidative Medicine and Cellular Longevity, 2020, 8348035. 10.1155/2020/8348035