Chemical profile, biological activities, and molecular docking of Algerian Juniperus phoenicea berries
Main Article Content
Keywords
α-amylase assay; anti-oxidant assays; essential oil; Juniperus phoenicea L berries; molecular docking; non-polar extracts
Abstract
The chemical composition, antioxidant activities, and α-amylase enzyme inhibitory activity of Algerian Juniperus phoenicea L berries were quantitatively and qualitatively determined in this study. Essential oil (EO) and non-polar crude extracts from cyclohexane and ethyl acetate were prepared, and the chemical profile was determined using GC-MS technique. The predominant compound in the EO was α-pinene (76.03%), while communic acid (23.66% and 22.38%) was the main compound in both non-polar crude extracts. The antioxidant potential of the samples was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid)-diammonium salt (ABTS), and phenanthroline. All samples showed weak antioxidant capacity. The antidiabetic effect was assessed in vitro using the α-amylase assay; a strong inhibitory effect against the α-amylase enzyme was detected for both cyclohexane and ethyl acetate extracts with IC50 (IC50 = 186.91 ± 5.74 mg/mL and IC50 = 351.48 ± 0.17 mg/mL, respectively). Finally, an in silico study was performed for both α-amylase and α-glucosidase proteins to enhance our outcomes.
References
Adams, R. P. (2001). Identification of essential oil components by gas chromatography/ quadrupole mass spectrometry. Carol Stream, IL: Allured Publishing Corporation.
Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K. & Büsselberg, D. (2019). Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430–464. https://doi.org/10.3390/biom9090430
Amalich, S., Zekri, N., N'Dédianhoua, K. S., Fadili, K., Khabbal, Y., Mahjoubi, M. &Zaïr, T. (2015). Chemical characterization and antibacterial evaluation of Juniperus phoenicea L. leaves and fruits' essential oils from eastern high Atlas (Morocco). International Journal of Innovation and Applied Studies, 13, 881—889.
Amirifar, A., Hemati, A., Asgari Lajayer, B., Pandey, J., & Astatkie, T. (2022). Impact of various environmental factors on the biosynthesis of alkaloids in medicinal plants, In: Aftab, T., editor. Environmental challenges and medicinal plants. Cham, Switzerland: Springer; p. 229–248.
Angioni, A., Barra, A., Russo, M. T., Coroneo, V., Dessi, S., & Cabras, P. (2003). Chemical composition of the essential oils of Juniperus from ripe and unripe berries and leaves and their antimicrobial activity. Journal of Agricultural and Food Chemistry, 51(10), 3073–3080. https://doi.org/10.1021/jf026203j
Asgari, Lajayer B., Ghorbanpour, M., & Nikabadi, S. (2017). Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicology and Environmental Safety, 145, 377–390. https://doi.org/10.1016/j.ecoenv.2017.07.035
Banerjee, S., Singh, H., & Chatterjee, T. K. (2013). Evaluation of anti-diabetic and anti-hyperlipidemic potential of methanolic extract of Juniperus communis (L.) in streptozotocin-nicotinamide induced diabetic rats. International Journal of Pharmaceutical and Biological Sciences, 4(3), 10–17. https://www.cabidigitallibrary.org/doi/full/10.5555/20133392186
Barrero, A. F., et al. (2005). Chemical composition of the essential oils of Cupressus atlantica Gaussen. Journal of Essential Oil Research, 17(4), 437–439. https://doi.org/10.1080/10412905.2005.9698954
Bergenhem, N. (2011). Preclinical candidate nomination and development. In: Tsaioun, K., Kate, S. A., editors. Admet for medicinal chemists. Singapore: John Wiley and Sons; p. 399–415.
Boudiba, S., et al. (2021). Anti-quorum sensing and antioxidant activity of essential oils extracted from Juniperus species, growing spontaneously in Tebessa region (East of Algeria). Natural Product Communications, 16(6), 1934578X2110240. https://doi.org/10.1177/1934578X2110240
Bolouri, Parisa., et al. (2022). Applications of essential oils and plant extracts in different industries. Molecules, 27(24), 8999. https://doi.org/10.3390/molecules27248999
Bouras, Y., Atef, C., Cherrada, N., Gheraissa, N., Chenna, D., Elkhalifa, A., et al. (2024). Phytochemical profile and biological activities of Brassica oleracea var. elongata leaf and seed extracts: An in vitro study. Italian Journal of Food Science, 36(4), 193–207. https://doi.org/10.15586/ijfs.v36i4.2691
Bouyahyaoui, A., et al. (2016). Antimicrobial activity and chemical analysis of the essential oil of Algerian Juniperus phoenicea. Natural Product Communications, 11(4). PMID: 27396209
Brayer, G. D., Luo, Y., & Withers, S. G. (1995). The structure of human pancreatic alpha-amylase at 1.8: A resolution and comparisons with related enzymes. Protein Science, 4(9), 1730–1742. https://doi.org/10.1002/pro.5560040908
Byrne, F. P., et al. (2016). Tools and techniques for solvent selection: Green solvent selection guides. Sustainable Chemical Process, 4, 7. https://doi.org/10.1186/s40508-016-0051-z
Cheng, F., et al. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
Conforti, F., Statti, G., Loizzo, M. R., Sacchetti, G., Poli, F., & Menichini, F. (2005). In vitro antioxidant effect and inhibition of alpha-amylase of two varieties of Amaranthus caudatus seeds. Biological and Pharmaceutical Bulletin, 28(6), 1098–1102. https://doi.org/10.1248/bpb.28.1098
Deo, P., et al. (2016). In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes. BMC Complementary and Alternative Medicine, 16, 435–445. https://doi.org/:10.1186/s12906-016-1421-5
Edris, A. E. (2007). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytotherapy Research, 21(4), 308–323. https://doi.org/10.1002/ptr.2072
El-Sawi, S. A., Motawae, H. M., & Ali, A. M. (2007). Chemical composition, cytotoxic activity and antimicrobial activity of essential oils of leaves and berries of Juniperus phoenicea L. grown in Egypt. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 4(4), 417–426. https://doi.org/10.4314/ajtcam.v4i4.31236
Ennajar, M., Bouajila, J., Lebrihi, A., Mathieu, F., Abderraba, M., Raies, A., et al. (2009). Chemical composition and antimicrobial and antioxidant activities of essential oils and various extracts of Juniperus phoenicea L. (Cupressacees). Journal of Food Science, 74(7), M364–M371. https://doi.org/10.1111/j.1750-3841.2009.01277.x
Ennajar, Monia., et al. (2010). The influence of organ, season and drying method on chemical composition and antioxidant and antimicrobial activities of Juniperus phoenicea L. essential oils. Journal of the Science of Food and Agriculture, 90(3), 462–470. https://doi.org/10.1002/jsfa.3840
Ghannay, S., Kadri, A., & Aouadi, K. (2020). Synthesis, in vitro antimicrobial assessment, and computational investigation of pharmacokinetic and bioactivity properties of novel trifluoromethylated compounds using in silico ADME and toxicity prediction tools. Monatshefte für Chemie, 151, 267–280. https://doi.org/10.1007/s00706-020-02550-4
Ghouti, Dalila., et al. (2018). Phenolic profile and in vitro bioactive potential of Saharan Juniperus phoenicea L. and Cotula cinerea (Del) growing in Algeria. Food & Function Journa,. 9, 4664–4672. https://doi.org/10.1039/C8FO01392F
Gülçin, İlhami. (2010). Antioxidant properties of resveratrol: A structure–activity insight. Innovative Food Science & Emerging Technologies, 11(1), 210–218. https://doi.org/10.1016/ j.ifset.2009.07.002
Harhour, Aicha., Brada, Moussa., Fauconnier, Marie-Laure., & Lognay, Georges. (2018). Chemical composition and antioxidant activity of Algerian Juniperus phoenicea essential oil. Natural Product Sciences, 24(2), 125–131. https://doi.org/10.20307/nps.2018.24.2.125
Hongbin, Yang., et al. (2019). admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6), 1067–1069. https://doi.org/10.1093/bioinformatics/bty707
Huang, S. Y., & Zou, X. (2010). Advances and challenges in protein-ligand docking. International Journal of Molecular Sciences, 11(8), 3016–3034. https://doi.org/10.3390/ijms11083016
Jain, P. L., Patel, S. R., & Desai, M. A. (2022). Patchouli oil: An overview on extraction method, composition and biological activities. Journal of Essential Oil Research, 34, 1–11. https://doi.org/10.1080 /10412905.2021.1955761
Kadi, Imededdine. et al. (2023). Molecular interactions, binding stability, and synergistic inhibition on Acetylcholinesterase activity of Safranin O in combination with Quercetin and Gallic acid: In vitro and in silico study. Journal of Molecular Structure, 1286, 135562. https://doi.org/10.1016/ j.molstruc. 2023.135562
Kashtoh, Hamdy., & Kwang-Hyun Baek. (2022). Recent updates on phytoconstituent alpha-glucosidase inhibitors: An approach towards the treatment of type two diabetes. Plants,20, 2722. https://doi.org/10.3390/plants11202722
Keskes, Henda, Mnafgui, Kais, Hamden, Khaled, Damak, Mohamed, El Feki, Abdelfattah, & Allouche, Noureddine. (2014). In vitro anti-diabetic, anti-obesity and antioxidant proprieties of Juniperus phoenicea L. leaves from Tunisia. Asian Pacific Journal of Tropical Biomedicine, 4(2), S649–S655. https://doi.org/10.12980/APJTB.4.201414B114
Khodaei, Nastaran, Nguyen, Marina, Minh, Mdimagh, Asma, Bayen, Stéphane, & Karboune, Salwa. (2021). Compositional diversity and antioxidant properties of essential oils: Predictive models. LWT, 138, 110684. https://doi.org/10.1016/j.lwt.2020.110684
Loizzo, Monica R., Tundis, Rosa, Conforti, Filomena, Saab, Antoine, M., Statti, Giancarlo A., & Menichini, Francesco. (2007). Comparative chemical composition, antioxidant and hypoglycaemic activities of Juniperus oxycedrus ssp. oxycedrus L. berry and wood oils from Lebanon. Food Chemistry, 105(2), 572–578. https://doi.org/10.1016/j.foodchem.2007.04.015
Medini, H., et al. (2011). Chemical composition and antioxidant activity of the essential oil of Juniperus phoenicea L. berries. Natural Product Research, 25, 1695–1706. https://doi.org/10.1080/14786419.2010.535168
Mehira, K., et al. (2021). Chemical composition, antioxidant and antibacterial efficiency of essential oils from Algerian Juniperus phoenicea L. against some pathogenic bacteria. Tropical Journal of Natural Product Research (TJNPR), 5(11), 1966–1972. https://doi.org/10.26538/tjnpr/v5i11.13
Menaceur, F., Benchabane, A., Hazzit, M., & Baaliouamer, A. (2013). Chemical composition and antioxidant activity of Algerian Juniperus phoenicea L. extracts. Journal of Biologically Active Products from Nature, 3(1), 87–96. https://doi.org/10.1080/22311866.2013.782754
Messaoudi, M., Rebiai, A., Sawicka, B., Atanassova, M., Ouakouak, H., Larkem, I., et al. (2022). Effect of extraction methods on polyphenols, flavonoids, mineral elements, and biological activities of essential oil and extracts of Mentha pulegium L. Molecules, 27(1), 11. https://doi.org/10.3390/molecules27010011
Moreno, M. I., Isla, M. I., Sampietro, A. R., & Vattuone, M. A. (2000). Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. Journal of Ethnopharmacology, 71(1–2), 109–114. https://doi.org/10.1016/s0378-8741(99)00189-0
Merola, N., Castillo, J., Benavente-García, O., Ros, G., & Nieto, G. (2017). The effect of consumption of citrus fruit and olive leaf extract on lipid metabolism. Nutrients, 9(10), 1062. https://doi.org/10.3390/nu9101062
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., & Goodsell, D. S. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30, 2785–2791. https://doi.org/10.1002/jcc.21256
Mótyán, János A., Gyémánt, Gyöngyi, Harangi, János, & Bagossi, Péter. (2011). Computer-aided subsite mapping of α-amylases. Carbohydrate Research, 346(3), 410–415. https://doi.org/10.1016/j.carres.2010.12.002
Nahoum, V., et al. (2000). Crystal structures of human pancreatic alpha-amylase in complex with carbohydrate and proteinaceous inhibitors. The Biochemical Journal, 346(1), 201–208. PMID: 10657258; PMCID: PMC1220841.
Orhan, N., Aslan, M., Pekcan, M., Orhan, D. D., Bedir, E., & Ergun, F. (2012). Identification of hypoglycaemic compounds from berries of Juniperus oxycedrus subsp. oxycedrus through bioactivity guided isolation technique. Journal of Ethnopharmacology , 139(1), 110–118. https://doi.org/10.1016/j.jep.2011.10.027
Ostadi, A., Javanmard, A., Amani, Machiani, M., Morshedloo, M. R., Nouraein, M., Rasouli, F., et al. (2020). Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Industrial Crops and Products, 148, 112290. https://doi.org/10.1016/j.indcrop.2020.112290
Oyaizu, M. (1986). Studies on products of browning reactions: Antioxidative activities of product of browning reaction prepared from glucosamine. Japan Journal of Nutrition, 44, 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307
Özyürek, Mustafa, Güngör, Nilay, Baki, Sefa, Güçlü, Kubilay, & Apak, Reşat. (2012). Development of a silver nanoparticle-based method for the antioxidant capacity measurement of polyphenols. Analytical Chemistry, 84(18), 8052–8059. https://doi.org/10.1021/ac301925b
Pacifico, Severina, et al. (2013). Apolar Laurus nobilis leaf extracts induce cytotoxicity and apoptosis towards three nervous system cell lines. Food and Chemical Toxicology, 62, 628–637. https://doi.org/10.1016/j.fct.2013.09.029
Priscilla, D. H., Roy, D., Suresh, A., Kumar, V., & Thirumurugan, K. (2014). Naringenin inhibits α-glucosidase activity: A promising strategy for the regulation of postprandial hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chemico-Biological Interactions, 210, 77–85. https://doi.org/10.1016/j.cbi.2013.12.014
Samadi, Saba., Asgari, Behnam, Lajayer, Moghiseh, Ebrahim, & Rodríguez-Couto, Susana. (2021). Effect of carbon nanomaterials on cell toxicity, biomass production, nutritional and active compound accumulation in plants. Environmental Technology & Innovation, 21, 101323. https://doi.org/10.1016/j.eti.2020.101323
Sánchez de Medina, F., Gámez, M. J., Jiménez, I., Jiménez, J., Osuna, J. I., & Zarzuelo, A. (1994). Hypoglycemic activity of juniper "berries". Planta Medica, 60(3), 197–200. https://doi.org/ 10.1055/s-2006-959457
Sánchez-Vioque, R., et al. (2013). Polyphenol composition and antioxidant and metal chelating activities of the solid residues from the essential oil industry. Industrial Crops and Products, 49, 150–159. https://doi.org/10.1016/j.indcrop.2013.04.053
Singleton, Vernon, L., Orthofer, Rudolf, & Lamuela-Raventós, Rosa, M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
Swanston-Flatt, S. K., Day, C., Bailey, C. J., & Flatt, P. R. (1990). Traditional plant treatments for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia, 33(8), 462–464. https://doi.org/10.1007/BF00405106
Taviano, M. F., et al. (2011). Antioxidant and antimicrobial activities of branches extracts of five Juniperus species from Turkey. Pharmaceutical Biology, 49(10), 1014–1022. https://doi.org/10.3109 /13880209.2011.560161
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.
Journal of Computational Chemistry, . 31(2), 455–461. https://doi.org/10.1002/jcc.21334
Von Gadow, Astrid., Joubert, Elizabeth, & Hansmann, Chris F. (1997). Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis). Journal of Agricultural and Food Chemistry, 45(3), 632–638. https://doi.org/10.1021/jf960281n
Wang, Zhe, et al. (2020). Combined strategies in structure-based virtual screening. Physical Chemistry Chemical Physics, .22 (6), 3149–3159. DOI https://doi.org/10.1039/C9CP06303J
Williams, L. K., Chunmin, Li, Stephen, G. Withers, & Gary, D. Brayer. (2012). Order and disorder: Differential structural impacts of myricetin and ethyl caffeate on human amylase, an antidiabetic target. Journal of Medicinal Chemistry, 55(22), 10177–10186. https://doi.org/10.1021/jm301273u
Yokozawa, T., Chen, C. P., Dong, E., Tanaka, T., Nonaka, G. I., & Nishioka, I. (1998). Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2 picrylhydrazyl radical. Biochemical Pharmacology,.. 56(2), 213–222. https://doi.org/10.1016/s0006-2952(98)00128-2
Zahnit, W., Smara, O., Bechki, L., Bensouici, C., Messaoudi, M., Benchikha, N., ... et al. (2022). Phytochemical profiling, mineral elements, and biological activities of Artemisia campestris L. grown in Algeria. Horticulturae, 8(10), 914. https://doi.org/10.3390/horticulturae8100914
Zengin, Gokhan. Sarikurkcu, Cengiz. Aktumsek, Abdurrahman. Ceylan, Ramazan. & Ceylan, Olcay. (2014). A comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss. endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. Industrial Crops and Products. 53, 244–251. https://doi.org/10.1016/j.indcrop.2013.12.043