Chemical profile, biological activities, and molecular docking of Algerian Juniperus phoenicea berries

Main Article Content

Abderrezak Bouchareb
Abdelhak Djemel
Imededdine Kadi
Amar DJemoui
Chawki Bensouici
Maria Atanassova
Abdelhalim Zoukel
Mokhtar Benmohamed
Sheikh F. Ahmad
Sabry M. Attia
Farouk Benaceur
Wafa Zahnit
Mohammed Messaoudi

Keywords

α-amylase assay; anti-oxidant assays; essential oil; Juniperus phoenicea L berries; molecular docking; non-polar extracts

Abstract

The chemical composition, antioxidant activities, and α-amylase enzyme inhibitory activity of Algerian Juniperus phoenicea L berries were quantitatively and qualitatively determined in this study. Essential oil (EO) and non-polar crude extracts from cyclohexane and ethyl acetate were prepared, and the chemical profile was determined using GC-MS technique. The predominant compound in the EO was α-pinene (76.03%), while communic acid (23.66% and 22.38%) was the main compound in both non-polar crude extracts. The antioxidant potential of the samples was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid)-diammonium salt (ABTS), and phenanthroline. All samples showed weak antioxidant capacity. The antidiabetic effect was assessed in vitro using the α-amylase assay; a strong inhibitory effect against the  α-amylase enzyme was detected for both cyclohexane and ethyl acetate extracts with IC50 (IC50 = 186.91 ± 5.74 mg/mL and IC50 = 351.48 ± 0.17 mg/mL, respectively). Finally, an in silico study was performed for both α-amylase and α-glucosidase proteins to enhance our outcomes.

Abstract 73 | PDF Downloads 45 XML Downloads 3 HTML Downloads 0

References

Abdelli, W., Bahri, F., Höferl, M., Wanner, J., Schmidt, E. & Jirovetz, L. (2018). Chemical ‎composition, antimicrobial and anti-inflammatory activity of Algerian Juniperus ‎phoenicea essential oils. Natural Product Communications, 13(2), 223–228. https://doi.org/10.1177/1934578X1801300227‎‎
Adams, R. P. (2001). Identification of essential oil components by gas chromatography/ quadrupole mass spectrometry. Carol Stream, IL: Allured Publishing Corporation.
‎Al-Ishaq, R. K., Abotaleb, M., Kubatka, P., Kajo, K. & Büsselberg, D. (2019). Flavonoids ‎and their anti-diabetic effects: Cellular mechanisms and effects to improve blood ‎sugar levels. Biomolecules, 9(9), 430–464.‎ https://doi.org/10.3390/biom9090430
‎Amalich, S., Zekri, N., N'Dédianhoua, K. S., Fadili, K., Khabbal, Y., Mahjoubi, M. &Zaïr, T. (2015). Chemical characterization and antibacterial evaluation ‎of Juniperus phoenicea L. leaves and fruits' essential oils from eastern high Atlas ‎‎(Morocco). International Journal of Innovation and Applied Studies, 13, 881—889.‎
‎Amirifar, A., Hemati, A., Asgari Lajayer, B., Pandey, J., & Astatkie, T. (2022). Impact of ‎various environmental factors on the biosynthesis of alkaloids in medicinal plants, In: Aftab, T., editor. ‎Environmental challenges and medicinal plants. Cham, ‎Switzerland: Springer; p. 229–248.‎
‎Angioni, A., Barra, A., Russo, M. T., Coroneo, V., Dessi, S., & Cabras, P. (2003). Chemical ‎composition of the essential oils of Juniperus from ripe and unripe berries and leaves ‎and their antimicrobial activity. Journal of Agricultural and Food Chemistry, 51(10), 3073–3080.‎ https://doi.org/10.1021/jf026203j‎
‎Asgari, Lajayer B., Ghorbanpour, M., & Nikabadi, S. (2017). Heavy metals in ‎contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative ‎status and phytoextraction in medicinal plants. Ecotoxicology and Environmental Safety, 145, 377–390. https://doi.org/10.1016/j.ecoenv.2017.07.035‎
Banerjee, S., Singh, H., & Chatterjee, T. K. (2013). Evaluation of anti-diabetic and anti-‎hyperlipidemic potential of methanolic extract of Juniperus communis (L.) in ‎streptozotocin-nicotinamide induced diabetic rats. International Journal of Pharmaceutical ‎and Biological Sciences, 4(3), 10–17.‎ https://www.cabidigitallibrary.org/doi/full/10.5555/20133392186
‎Barrero, A. F., et al. (2005). Chemical composition of the essential oils of Cupressus ‎atlantica Gaussen. Journal of Essential Oil Research, 17(4), 437–439.‎ https://doi.org/10.1080/10412905.2005.9698954‎
Bergenhem, N. (2011). Preclinical candidate nomination and development. In: Tsaioun, ‎K., Kate, S. A., editors. Admet for medicinal chemists. Singapore: John Wiley and Sons; p. ‎‎399–415.‎
‎Boudiba, S., et al. (2021). Anti-quorum sensing and antioxidant activity of essential ‎oils extracted from Juniperus species, growing spontaneously in Tebessa region ‎‎(East of Algeria). Natural Product Communications, 16(6), 1934578X2110240. https://doi.org/10.1177/1934578X211024‎0
‎Bolouri, Parisa., et al. (2022). Applications of essential oils and plant extracts in ‎different industries. Molecules, 27(24), 8999. https://doi.org/10.3390/molecules27248999‎
Bouras, Y., Atef, C., Cherrada, N., Gheraissa, N., Chenna, D., Elkhalifa, A., et al. (2024). Phytochemical profile and biological activities of Brassica oleracea var. elongata leaf and seed extracts: An in vitro study. Italian Journal of Food Science, 36(4), 193–207. https://doi.org/10.15586/ijfs.v36i4.2691
Bouyahyaoui, A., et al. (2016). Antimicrobial activity and chemical analysis of the ‎essential oil of Algerian Juniperus phoenicea. Natural Product Communications, ‎‎11(4). PMID: 27396209‎‎
‎Brayer, G. D., Luo, Y., & Withers, S. G. (1995). The structure of human pancreatic alpha-‎amylase at 1.8: A resolution and comparisons with related enzymes. Protein Science, 4(9), ‎‎1730–1742.‎ https://doi.org/10.1002/pro.5560040908‎
‎Byrne, F. P., et al. (2016). Tools and techniques for solvent selection: Green solvent ‎selection guides. Sustainable Chemical Process, 4, 7. https://doi.org/10.1186/s40508-016-0051-z
‎Cheng, F., et al. (2012). admetSAR: A comprehensive source and free tool for assessment ‎of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105.‎ https://doi.org/10.1021/ci300367a ‎
‎Conforti, F., Statti, G., Loizzo, M. R., Sacchetti, G., Poli, F., & Menichini, F. (2005). In vitro ‎antioxidant effect and inhibition of alpha-amylase of two varieties of Amaranthus ‎caudatus seeds. Biological and Pharmaceutical Bulletin, 28(6), 1098–1102. https://doi.org/10.1248/bpb.28.1098‎‎
‎Deo, P., et al. (2016). In vitro inhibitory activities of selected Australian medicinal plant ‎extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive ‎enzymes linked to type II diabetes. BMC Complementary and Alternative Medicine, 16, 435–445. https://doi.org/:10.1186/s12906-016-1421-5‎
‎‎Edris, A. E. (2007). Pharmaceutical and therapeutic potentials of essential oils and their ‎individual volatile constituents: A review. Phytotherapy Research, 21(4), 308–323.‎ https://doi.org/10.1002/ptr.2072‎
‎El-Sawi, S. A., Motawae, H. M., & Ali, A. M. (2007). Chemical composition, cytotoxic ‎activity and antimicrobial activity of essential oils of leaves and berries of Juniperus ‎phoenicea L. grown in Egypt. African Journal of Traditional, Complementary, and ‎Alternative Medicines: AJTCAM, 4(4), 417–426. https://doi.org/10.4314/ajtcam.v4i4.31236‎
‎Ennajar, M., Bouajila, J., Lebrihi, A., Mathieu, F., Abderraba, M., Raies, A., et al. (2009). Chemical composition and antimicrobial and antioxidant activities of ‎essential oils and various extracts of Juniperus phoenicea L. (Cupressacees). Journal of Food ‎Science, 74(7), M364–M371. https://doi.org/10.1111/j.1750-3841.2009.01277.x‎
‎Ennajar, Monia., et al. (2010). The influence of organ, season and drying method on ‎chemical composition and antioxidant and antimicrobial activities of Juniperus ‎phoenicea L. essential oils. Journal of the Science of Food and ‎Agriculture, 90(3), 462–‎‎470. ‎ https://doi.org/10.1002/jsfa.3840‎
Ghannay, S., Kadri, A., & Aouadi, K. (2020). Synthesis, in vitro antimicrobial assessment, ‎and computational investigation of pharmacokinetic and bioactivity properties of novel ‎trifluoromethylated compounds using in silico ADME and toxicity prediction tools. ‎Monatshefte für Chemie, 151, 267–280.‎ https://doi.org/10.1007/s00706-020-02550-4‎
Ghouti, Dalila., et al. (2018). Phenolic profile and in vitro bioactive potential of Saharan ‎Juniperus phoenicea L. and Cotula cinerea (Del) growing in Algeria. Food & Function Journa,. 9, 4664–4672. https://doi.org/10.1039/C8FO01392F‎
Gülçin, İlhami. (2010). Antioxidant properties of resveratrol: A structure–activity ‎insight. Innovative Food Science & Emerging Technologies, 11(1), 210–218.‎‎ https://doi.org/10.1016/ j.ifset.2009.07.002‎
‎Harhour, Aicha., Brada, Moussa., Fauconnier, Marie-Laure., & Lognay, Georges. (2018). Chemical ‎composition and antioxidant activity of Algerian Juniperus phoenicea essential oil. ‎Natural Product Sciences, 24(2), 125–131.‎ https://doi.org/10.20307/nps.2018.24.2.125‎
‎Hongbin, Yang., et al. (2019). admetSAR 2.0: Web-service for prediction and optimization of ‎chemical ADMET properties. Bioinformatics, 35(6), 1067–1069.‎ https://doi.org/10.1093/bioinformatics/bty707‎
‎Huang, S. Y., & Zou, X. (2010). Advances and challenges in protein-ligand docking. International Journal of Molecular Sciences, 11(8), 3016–3034.‎ https://doi.org/10.3390/ijms11083016‎

‎ Jain, P. L., Patel, S. R., & Desai, M. A. (2022). Patchouli oil: An overview on extraction ‎method, composition and biological activities. Journal of Essential Oil Research, 34, 1–11. ‎ https://doi.org/10.1080 /10412905.2021.1955761‎
Kadi, Imededdine. et al. (2023). Molecular interactions, binding stability, and ‎synergistic inhibition on Acetylcholinesterase activity of Safranin O in combination ‎with Quercetin and Gallic acid: In vitro and in silico study. Journal of Molecular ‎Structure, 1286, 135562.‎ https://doi.org/10.1016/ j.molstruc. 2023.135562
Kashtoh, Hamdy., & Kwang-Hyun Baek. (2022). Recent updates on phytoconstituent ‎alpha-glucosidase inhibitors: An approach towards the treatment of type two ‎diabetes. Plants,20, 2722. https://doi.org/10.3390/plants11202722‎
‎ Keskes, Henda, Mnafgui, Kais, Hamden, Khaled, Damak, Mohamed, El ‎Feki, Abdelfattah, & Allouche, Noureddine. (2014). In vitro anti-diabetic, anti-obesity and antioxidant ‎proprieties of Juniperus phoenicea L. leaves from Tunisia. Asian Pacific Journal of ‎Tropical Biomedicine, 4(2), S649–S655.‎ https://doi.org/10.12980/APJTB.4.201414B114‎
Khodaei, Nastaran, Nguyen, Marina, Minh, Mdimagh, Asma, Bayen, Stéphane, & Karboune, ‎Salwa. (2021). Compositional diversity and antioxidant properties of ‎essential oils: Predictive models. LWT, 138, 110684.‎ https://doi.org/10.1016/j.lwt.2020.110684‎
‎Loizzo, Monica R., Tundis, Rosa, Conforti, Filomena, Saab, Antoine, M., Statti, Giancarlo A., & Menichini, Francesco. (2007). Comparative chemical composition, antioxidant ‎and hypoglycaemic activities of Juniperus oxycedrus ssp. oxycedrus L. berry and ‎wood oils from Lebanon. Food Chemistry, 105(2), 572–578. https://doi.org/10.1016/j.foodchem.2007.04.015‎
Medini, H., et al. (2011). Chemical composition and antioxidant activity of the essential ‎oil of Juniperus phoenicea L. berries. Natural Product Research, 25, 1695–1706. https://doi.org/10.1080/14786419.2010.535168‎
‎Mehira, K., et al. (2021). Chemical composition, antioxidant and antibacterial ‎efficiency of essential oils from Algerian Juniperus phoenicea L. against some ‎pathogenic bacteria. Tropical Journal of Natural Product Research (TJNPR), 5(11), ‎‎1966–1972.‎ https://doi.org/10.26538/tjnpr/v5i11.13‎
Menaceur, F., Benchabane, A., Hazzit, M., & Baaliouamer, A. (2013). Chemical ‎composition and ‎antioxidant activity of Algerian Juniperus phoenicea L. extracts. ‎Journal of Biologically Active ‎Products from Nature, 3(1), 87–96.‎ https://doi.org/10.1080/22311866.2013.782754‎
Messaoudi, M., Rebiai, A., Sawicka, B., Atanassova, M., Ouakouak, H., Larkem, I., et al. (2022). Effect of extraction methods on polyphenols, flavonoids, mineral elements, and biological activities of essential oil and extracts of Mentha pulegium L. Molecules, 27(1), 11. https://doi.org/10.3390/molecules27010011
Moreno, M. I., Isla, M. I., Sampietro, A. R., & Vattuone, M. A. (2000). Comparison of the free ‎radical-scavenging activity of propolis from several regions of Argentina. Journal of Ethnopharmacology, 71(1–2), 109–114.‎ https://doi.org/10.1016/s0378-8741(99)00189-0‎
‎Merola, N., Castillo, J., Benavente-García, O., Ros, G., & Nieto, G. (2017). The effect of ‎consumption of citrus fruit and olive leaf extract on lipid metabolism. Nutrients, 9(10), 1062.‎ https://doi.org/10.3390/nu9101062
‎Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., & Goodsell, D. S. 2009. ‎AutoDock4 and AutoDockTools4: Automated docking with selective receptor ‎flexibility. Journal of Computational Chemistry, 30, 2785–2791.‎ https://doi.org/10.1002/jcc.21256
‎ Mótyán, János A., Gyémánt, Gyöngyi, Harangi, János, & Bagossi, Péter. (2011). ‎Computer-aided subsite mapping of α-amylases. Carbohydrate Research, 346(3), 410–‎‎415.‎ https://doi.org/10.1016/j.carres.2010.12.002‎
Nahoum, V., et al. (2000). Crystal structures of human pancreatic alpha-amylase in ‎complex with carbohydrate and proteinaceous inhibitors. The Biochemical Journal, ‎‎346(1), 201–208.‎ PMID: 10657258; PMCID: PMC1220841.
Orhan, N., Aslan, M., Pekcan, M., Orhan, D. D., Bedir, E., & Ergun, F. (2012). Identification ‎of hypoglycaemic compounds from berries of Juniperus oxycedrus subsp. oxycedrus ‎through bioactivity guided isolation technique. Journal of Ethnopharmacology , 139(1), 110–118.‎ https://doi.org/10.1016/j.jep.2011.10.027‎
‎Ostadi, A., Javanmard, A., Amani, Machiani, M., Morshedloo, M. R., Nouraein, M., ‎Rasouli, F., et al. (2020). Effect of different fertilizer sources and harvesting time ‎on the growth characteristics, nutrient uptakes, essential oil productivity and ‎composition of Mentha x piperita L. Industrial Crops and Products, 148, 112290.‎ https://doi.org/10.1016/j.indcrop.2020.112290‎
‎Oyaizu, M. (1986). Studies on products of browning reactions: Antioxidative ‎activities of product of browning reaction prepared from glucosamine. Japan ‎Journal of Nutrition, 44, 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307
‎ Özyürek, Mustafa, Güngör, Nilay, Baki, Sefa, Güçlü, Kubilay, & Apak, Reşat. (2012). ‎Development of a silver nanoparticle-based method for the antioxidant capacity ‎measurement of ‎polyphenols. Analytical Chemistry, 84(18), 8052–8059‎.‎ https://doi.org/10.1021/ac301925b‎
Pacifico, ‎Severina, et al. (2013). Apolar Laurus nobilis leaf extracts induce cytotoxicity ‎and apoptosis towards three nervous system cell lines. Food and Chemical Toxicology, ‎‎62, 628–637.‎ https://doi.org/10.1016/j.fct.2013.09.029‎
‎Priscilla, D. H., Roy, D., Suresh, A., Kumar, V., & Thirumurugan, K. (2014). Naringenin ‎inhibits α-glucosidase activity: A promising strategy for the regulation of postprandial ‎hyperglycemia in high fat diet fed streptozotocin induced diabetic rats. Chemico-‎Biological Interactions, 210, 77–85.‎ https://doi.org/10.1016/j.cbi.2013.12.014‎
‎Samadi, Saba., Asgari, Behnam, Lajayer, Moghiseh, Ebrahim, & Rodríguez-‎Couto, Susana. (2021). Effect of carbon nanomaterials on cell toxicity, biomass production, ‎nutritional and active compound accumulation in plants. Environmental Technology & ‎Innovation, 21, 101323.‎ https://doi.org/10.1016/j.eti.2020.101323‎
‎Sánchez de Medina, F., Gámez, M. J., Jiménez, I., Jiménez, J., Osuna, J. I., & Zarzuelo, A. ‎‎(1994). ‎Hypoglycemic activity of juniper "berries". Planta Medica, 60(3), 197–200.‎ https://doi.org/ 10.1055/s-2006-959457‎
Sánchez-Vioque, R., et al. (2013). Polyphenol composition and antioxidant and metal ‎chelating activities of the solid residues from the essential oil industry. Industrial ‎Crops and Products, 49, 150–159. https://doi.org/10.1016/j.indcrop.2013.04.053‎
Singleton, Vernon, L., Orthofer, Rudolf, & Lamuela-Raventós, Rosa, M. (1999). Analysis ‎of total phenols and other oxidation substrates and antioxidants by means of folin-‎ciocalteu reagent. Methods in Enzymology, 299, 152–178.‎ https://doi.org/10.1016/S0076-6879(99)99017-1‎
‎Swanston-Flatt, S. K., Day, C., Bailey, C. J., & Flatt, P. R. (1990). Traditional plant treatments ‎for diabetes. Studies in normal and streptozotocin diabetic mice. Diabetologia, 33(8), ‎‎462–464. https://doi.org/10.1007/BF00405106‎
Taviano, M. F., et al. (2011). Antioxidant and antimicrobial activities of branches extracts ‎of five Juniperus species from Turkey. Pharmaceutical Biology, 49(10), 1014–1022.‎ https://doi.org/10.3109 /13880209.2011.560161‎
‎Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of ‎docking with a new scoring function, efficient optimization, and multithreading.
Journal of Computational Chemistry, . 31(2), 455–461.‎ https://doi.org/10.1002/jcc.21334‎
‎Von Gadow, Astrid., Joubert, Elizabeth, & Hansmann, Chris F. (1997). Comparison of the ‎antioxidant activity of aspalathin with that of other plant phenols of rooibos tea ‎‎(Aspalathus linearis). Journal of Agricultural and Food Chemistry, 45(3), 632–638. https://doi.org/10.1021/jf960281n‎
Wang, Zhe, et al. (2020). Combined strategies in structure-based virtual screening. Physical Chemistry Chemical Physics, .22 (6), 3149–3159. ‎ DOI https://doi.org/10.1039/C9CP06303J
‎Williams, L. K., Chunmin, Li, Stephen, G. Withers, & Gary, D. Brayer. (2012). Order and disorder: Differential structural impacts of myricetin and ethyl caffeate on human amylase, an antidiabetic target. Journal of ‎Medicinal ‎Chemistry, 55(22), 10177–10186.‎ https://doi.org/10.1021/jm301273u‎
Yokozawa, T., Chen, C. P., Dong, E., Tanaka, T., Nonaka, G. I., & Nishioka, I. (1998). Study ‎on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2 ‎picrylhydrazyl radical. Biochemical Pharmacology,.. 56(2), 213–222.‎ https://doi.org/10.1016/s0006-2952(98)00128-2
Zahnit, W., Smara, O., Bechki, L., Bensouici, C., Messaoudi, M., Benchikha, N., ... et al. (2022). Phytochemical profiling, mineral elements, and biological activities of Artemisia campestris L. grown in Algeria. Horticulturae, 8(10), 914. https://doi.org/10.3390/horticulturae8100914
Zengin, Gokhan. Sarikurkcu, Cengiz. Aktumsek, Abdurrahman. Ceylan, Ramazan. & Ceylan, ‎Olcay. (2014). A comprehensive study on phytochemical characterization of ‎Haplophyllum myrtifolium Boiss. endemic to Turkey and its inhibitory potential ‎against key enzymes involved in Alzheimer, skin diseases and type II diabetes. ‎Industrial Crops and Products. 53, 244–251.‎ https://doi.org/10.1016/j.indcrop.2013.12.043‎