Effect of sodium carbonate on nutritional composition and antioxidant activities of Indonesian Mesona Blume extract
Main Article Content
Keywords
antioxidant, aqueous extraction, Mesona Blume, nutrition, sodium carbonate
Abstract
Mesona plant has long been used as a traditional herbal medicine to treat hyperglycemia, hypertension, hyperlipidemia, hepatic and colon disorders, and inflammation. China is the main producer of dried Mesona, but Indonesian Mesona is also popular, particularly in Thailand because of inexpensiveness and quality consistency. The nutritive values, total phenolic content, total flavonoid content, and antioxidant activities of the Indonesian Mesona plant aqueous extracts from both with and without sodium carbonate (control) were determined. After separation, the supernatant and precipitated extracts were analyzed for antioxidant activities, such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP). Results showed that the extracts from sample-added sodium carbonate yielded more crude protein, crude fat, and crude carbohydrate, compared to control extracts. Total phenolic contents and total flavonoid contents of extract supernatants with and without sodium carbonate were higher than the precipitated extracts with and without treatment. Supernatant extract with and without sodium carbonate showed higher values of all tested antioxidant activities based on ABTS, DPPH, and FRAP, compared to the precipitate extracts. The IC50 values of ABTS DPPH, and FRAP found in the supernatants with and without sodium carbonate were 0.18±0.13, 0.27±0.17, and 0.13±0.02 mg/mL and 0.25±0.02, 0.14±0.06, and 0.20±0.09 mg/mL, respectively, while the values of precipitates were 0.47±0.06, 0.61±0.02, and 0.34±0.01 mg/mL and 0.73±0.03, 0.29±0.08, and 0.32±0.04 mg/mL, respcetively. Plant extraction with addition of sodium carbonate revealed good nutritional value, total polyphenolic content, total flavonoid content, and antioxidant activities. Adding sodium carbonate improved the extraction process, with a higher yield, several bioactive compounds, and biological activities.
References
Arnao, M.B., Cano, A., and Acosta, M. 2001. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 73: 239–244. 10.1016/S0308-8146(00)00324-1
Association of Official Analytical Chemist (AOAC). 2019. Official Methods of Analysis, 21st edition. AOAC, Washington, DC.
Auddy, B., Ferreira, M., Blasina, F., Lafon, L., Arredondo, F., Dajas, F., Tripathi, P.C., Seal, T., and Mukherjee, B. 2003. Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J Ethnopharmacol. 84: 131–138. 10.1016/s0378-8741(02)00322-7
Bartolini, M., and Grau, R. 2019. Assessing different ways of Bacillus subtilis spreading over abiotic surfaces. J Bioprotocol. 9(22): e3425. 10.21769/BioProtoc.3425
Benzie, I.F.F., and Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power.” The FRAP assay. Anal Biochem. 239: 70–76.
Chaaban, H., Ioannou, I., Chebil, L., Slimane, M., Gerardin, C., Paris, C., Charbonnel, C., Chekir, L., and Ghoul, M. 2017. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J Food Process Pres. 41(5): e13203. 10.1111/jfpp.13203
Chandra, S., Khan, S., Avula, B., Lata, H., Yang, M.H., ElSohly, M.A., and Khan, I.A. 2014. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: a comparative study. Evid Based Complement. Alternat Med. 2014: 253875. 10.1155/2014/253875
Chau, C.F., and Wu, S.H. 2006. The development of regulations of Chinese herbal medicines for both medicinal and food uses. Trends Food Sci Technol. 17: 313–323. 10.1016/j.tifs.2005.12.005
Chethan, S., and Malesshi, N.G. 2007. Finger millet polyphenols: optimization of extraction and the effect of pH on their stability. Food Chem. 105: 862–870. 10.1016/j.foodchem.2007.02.012
Choi, J.Y., Park, H., Park, J.J., and Cho, I.H. 2023. Validation of the AOAC method for analyzing fatty acids in meat by-products for the Korean food composition database. Food Sci Biotechnol. 32: 847–854. 10.1007/s10068-022-01223-8
Chusak, C., Thilavech, T., and Adisakwattana, S. 2014. Consumption of Mesona chinensis attenuates postprandial glucose and improves antioxidant status induced by a high carbohydrate meal in overweight subjects. Am J Chin Med. 42: 315–336. 10.1142/s0192415X14500219
Conidi, C., Drioli, E., and Cassano, A. 2020. Biologically active compounds from Goji (Lycium Barbarum L.) leaves aqueous extracts: purification and concentration by membrane processes. Biomolecules. 10(6): 935. 10.3390/biom10060935
De Menezes, B.B., Frescura, L.M., Duarte, R., Villetti, M.A., and da Rosa, M.B. 2021. A critical examination of the DPPH method: mistakes and inconsistencies in stoichiometry and IC50 determination by UV-Vis spectroscopy. Anal Chimica Acta. 1157: 338398. 10.1016/j.aca.2021.338398
Ellefson, W. 1993. Provisions of nutrition labeling and education act. In: Sullivan, D.M., and Carpenter, D.E. (Eds.) Methods of Analysis for Nutrition Labeling. AOAC International, Arlington, VA, p. 8.
El-Samahy, S.K., Abd El-Hady, E.A., Habiba, R.A., and Moussa-Ayoub, T.E. 2007. Some functional, chemical, and sensory characteristics of cactus pear rice based extrudates. J Prof Assoc Cactus Dev. 9: 136–147. https://api.semanticscholar.org/CorpusID:4893834
Faye, P.G., Niang, L., Ndiaye, E.M., Cisse, O.I.K., Sow, A., Ayessou, N.E., and Cisse, M. 2023. Effect of sodium carbonate on extraction by aqueous decoction of total polyphenols from crushed and whole leaves of Combretum micranthum. Food Nutr Sci. 14: 812–823. 10.4236/fns.2023.149052
Feng, T., Biao, G.Z., Jin, Z.Y., and Zhuang, H.N. 2008. Isolation and characterization of an acidic polysaccharide from Mesona Blumes gum. Carbohydr Polym. 71: 159–169. 10.1016/j.carbpol.2007.05.017
Feng, P., Weagant, S.D., Grant, M.A., and Burkhardt, W. 2020. Enumeration of Escherichia coli and the coliform bacteria. In: Bacteriological Analytical Manual, Chap. 4. The United States Food and Drug Administration, Silver Spring, MD. Available at: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4-enumeration-escherichia-coli-and-coliform-bacteria (Accessed on: 20 September 2024).
Ghasemzadeh, A., Jaafar, H.Z., and Rahmat, A. 2011. Effects of solvent type on phenolics and flavonoids content and antioxidant activities in two varieties of young ginger (Zingiber officinale Roscoe) extracts. J Med Plants Res. 5: 1147–1154. https://academicjournals.org/article/article1380532263_Ghasemzadeh%20et%20al.pdf
Handayani, D., TriDewanti, W., Novita, W., Mey, E., and Hanifa, H. 2017. Black grass jelly (Mesona Palustris Bl) effervescent powder has anti-dyslipidemia in high cholesterol diet-fed rats and antioxidant activity. Res J Life Sci. 4: 159–167. https://rjls.ub.ac.id/index.php/rjls/article/view/184
Hartley, I.E., Liem, D.G., and Keast, R. 2019. Umami as an “alimentary” taste. a new perspective on taste classification. Nutrients. 11(1): 182. 10.3390/nu11010182
Hasan, M.D.N., Akhtaruzzaman, M., and Sultan M.D.Z. 2013. Estimation of vitamins B-complex (B2, B3, B5, and B6) of some leafy vegetables indigenous to Bangladesh by HPLC method. J Anal Sci Methods Instrum. 3: 24–29. 10.4236/jasmi.2013.33A004
Huang, H.C., Chuang, S.H., Wu, Y.C., and Chao, P.M. 2016. Hypolipidaemic function of Hsian-tsao tea (Mesona procumbens Hemsl.): working mechanisms and active components. J Funct Foods. 26: 217–227. 10.1016/j.jff.2016.07.019
Huang, G.J., Liao, J.C., Chiu, C.S., Huang, S.S., Lin, T.H., and Deng, J.S. 2012. Anti-inflammatory activities of aqueous extract of Mesona procumbens in experimental mice. Sci Food Agric. 92: 1186–1193. 10.1002/jsfa.4682
Huang, H.T., Liaw, C.C., Lin, Y.C., Liao, G.Y., Chao, C.H., Chiou, C.T., Kuo, Y.H., and Lee, K.T. 2021. New diterpenoids from Mesona procumbens with antiproliferative activities modulate cell cycle arrest and apoptosis in human leukemia cancer cells. Pharmaceuticals. 14: 1108. 10.3390/ph14111108
Huang, L., Shen, M., Zhang, X., Jiang, L., Song, Q., and Xie, J. 2018. Effect of high-pressure microfluidization treatment on the physicochemical properties and antioxidant activities of polysaccharide from Mesona chinensis benth. Carbohydr. Polym. 200: 191–199. 10.1016/j.carbpol.2018.07.087
Huang, C.Y., and Yen, G.C. 2002. Antioxidant activity of phenolic compounds isolated from Mesona procumbens Hemsl. Agric Food Chem. 50: 2993–2997. 10.1021/jf011454y
Kim, Y., Kim, E.Y., Son, H.J., Lee, J.J., Choi, Y.H., and Rhyu, M.R. 2017. Identification of a key umami-active fraction in modernized Korean soy sauce and the impact thereof on bitter-masking. Food Chem. 233: 256–262. 10.1016/j.foodchem.2017.04.123
Kugel, R.W. 1998. Raoult’s law: binary liquid-vapor phase diagrams. J Chem Edu. 75(9): 1125–1129. 10.1021/ed075p1125
Le, Q.U., Lay, H.L., and Wu, M.C. 2018. Antioxidant activities and HepG2 cells growth inhibitory capacity of whole plant ethanol extracts (Eclipta alba Hassk and Mesona procumbens Hemsl). J Food Biochem. 42: e12454. 10.1111/jfbc.12454
Li, Q., Li, Y., Li, Q., Chen, Z., Chen, J., and Geng, S. 2021. Evaluation of morphological and phytochemical characteristics of Mesona chinensis populations in southern China. J Plant Prod Sci. 24: 374–387. 10.1080/1343943X.2020.1847667
Li, D.Y., Lu, G., Wang, D.D., and Wang, M. 2010. The influence of Xiancao hypolipidemic tea on the TC and TG metabolism of the experimental rabbits. Chin Gen Pract. 13: 9–10.
Lin, L.H., Shen, M.Y., Liu, S.C., Tang, W., Wang, Z.J., Xie, M.Y., and Xie, J.H. 2018. An acidic heteropolysaccharide from Mesona chinensis: rheological properties, gelling behavior and texture characteristics. Int J Biol Macromol. 107: 1591–1598. 10.1016/j.ijbiomac.2017.10.029
Liu, X.G., and Chen, M.M. 2004. Research on the exploitation and utilization of Mesona Blume in China. Food. Res Dev. 5: 109–14. 10.3969/j.issn.1005-6521.2004.05.040
Liu, F.L., and Feng C.L. 2008. In vitro antibacterial test of Hsian-tsao (Mesona chinensis Benth) against avian Escherichia coli. Guangdong. J Anim Vet Sci. 33: 17–43.
Longnecker, N.E., Alan, D., and Robson, A.D. 1993. Distribution and transport of zinc in plants. In: Robson, A.D (ed) Proceedings of the International Symposium on “Zinc in Soils and Plants,” The University of Western Australia, 27–28 September, 1993. Dordrecht; Boston : Kluwer Academic Publishers, P. 208.
Maturin, L., and Peeler, J.T. 2001. Aerobic plate count. In: Bacteriological Analytical Manual, Chap. 3. The United States Food and Drug Administration, Jinneman, K. (ed.), p. 1–12. Silver Spring, MD. Available at: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-3-aerobic-plate-count (Accessed on: 20 September 2024).
Mendez-Lagunas, L.L., Cruz-Gracida, M., Barriada-Bernal, L.G., and Rodrı´guez-Me´ndez, L.I. 2020. Profile of phenolic acids, antioxidant activity and total phenolic compounds during blue corn tortilla processing and its bioaccessibility. J Food Sci Technol. 57(12): 4688–4696. https://link.springer.com/article/10.1007/s13197-020-04505-3
Metwally, A.M.M., Dabiza, N.M.A., El-Kholy, W.I., and Sadek, Z.I. 2011. The effect of boiling on milk microbial contents and quality. J Am Sci. 7(2): 110–114. https://www.researchgate.net/publication/22887324
Omeje, K.O., Ezema, B.O., Okonkwo, F., Onyishi, N.C., Ozioko, J., Rasaq, W.A., Sardo, G., and Okpala, C.O.R. 2021. Quantification of heavy metals and pesticide residues in widely consumed nigerian food crops using atomic absorption spectroscopy (AAS) and gas chromatography (GC). Toxins. 13: 870. 10.3390/toxins13120870
Pozo, M.B.D., Lourdes, G.G., and Beatriz, G.R. 2010. Influence of alkaline treatment on structural modifications of chlorophyll pigments in NaOH-treated table olives preserved without fermentation. Foods. 9: 701. 10.3390/foods9060701
Qian, J., Zhao, F., Gao, J., Qu, L., He, Z., and Yi, S. 2021. Characterization of the structural and dynamic changes of cell wall obtained by ultrasound-water and ultrasound-alkali treatments. J Ultrason Sonochem. 77: 105672. 10.1016/j.ultsonch.2021.105672
Rahmah, R., Astuti, Y., Salimo, H., Pamungkasari, E.P., and Wasita, B. 2022. Beneficial effect of Mesona palustris BL: a review on human and animal intervention. J Med Sci. 10: 171–174. 10.3889/oamjms.2022.7858
Rommel, A., and Wrolastad, R.E. 1993. Influence of acid and base hydrolysis on the phenolic composition of red raspberry juice. J Agric Food Chem. 41: 1237–1241. 10.1021/jf00032a014
Sarwar, G, Botting, H.G., and Peace R.W. 1988. Complete amino acid analysis in hydrolysates of food and feces by liquid chromatography of precolumn phenyl isothiocyanate derivatives. J Ass Off Anal Chem. 71: 1172–1175. 10.1093/jaoac/71.6.1172
Seah, R., Siripongvutikorn, S., Wichienchot, S., and Usawakesmanee, W. 2024. Functionality and health-promoting properties of polysaccharide and plant-derived substances from Mesona chinensis. Foods. 13: 1134. 10.3390/foods13071134
Shiga, K., Yamamoto, S., Nakajima, A., Kodama, Y., Imamura, M., Sato, T., Uchida, R., Obata, A., Bamba, T., and Fukusaki, E. 2014. Metabolic profiling approach to explore compounds related to the umami of soy sauce. J Agric Food Chem. 62: 7317–7322. 10.1021/jf501173r
Soni, A., Oey, I., Silcock, P., and Bremer, P. 2016. Bacillus spores in the food industry: a review on resistance and response to novel inactivation technologies. Compr Rev Food Sci Food Saf (CRFSFS). 15(6): 1139–1148. 10.1111/1541-4337.12231
Su, H.L., Huang, Y.Z., and Chen, J.Y. 2011. Comparative analysis of amino acids content in Mesona chinensis from different producing areas. Chin Wild Plant Res. 30: 66–69.
Sun, J., Chu, Y.F., Wu, X., and Liu, R.H. 2002. Antioxidant and antiproliferative activities of common fruits. J Agr Food Chem. 50: 7449–7454. 10.1021/jf0207530
Sun, T., Dreolin, N., Hird, S., and Collette, N. 2023. Analysis of aflatoxins in corn and peanuts using immunoaffinity chromatography and the Arc™ HPLC system. Waters Corporations. Available at: https://lcms.cz/labrulez-bucket-strapi-h3hsga3/720007843_en_e51262744b/720007843-en.pdf (Accessed on: 20 September 2024).
Suriyaphan, O., Tangsathitkulchai, K., Chewchinda, S., Lomarat, P., and Sato, V.H. 2023. Antioxidant activity and a-glucosidase inhibitory activity of Mesona chinensis aqueous extract. Burapha Sci J. 28(3): 1766–1782. https://scijournal.buu.ac.th/index.php/sci/article/view/4858
Tallent, S., Hait, J., Bennett, R.W., and Lancette, G.A. 2016. Staphylococcus aureus. In: Bacteriological Analytical Manual, Chap 12. The United States Food and Drug Administration, Silver Spring, MD. Available at: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-12-staphylococcus-aureus (Accessed on: 20 September 2024).
Tallent, S.M. Knolhoff, E.A., Rhodehamel, J., Harmon, S.M., and Bennett, R.W. 2020. Bacillus cereus. In: Bacteriological Analytical Manual, Chap. 14. The United States Food and Drug Administration, Jinneman, K. (ed.), p. 446–451. Silver Spring, MD. Available at: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-14-bacillus-cereus (Accessed on: 20 September 2024).
Tang, D., Quan, C., Huang, S., and Wei, F. 2023. Integrating LC-MS and HS-GC-MS for the metabolite characterization of the Chinese medicinal plant Platostoma palustre under different processing methods. J Front Nutr. 10: 1–18. 10.3389/fnut.2023.1181942
Tang, D., Quan, C., Lin, Y., Wei, K., Qin, S., Liang, Y., Wei, F., and Miao, J. 2022. Physio-morphological, biochemical and transcriptomic analyses provide insights into drought stress responses in Mesona chinensis Benth. Front Plant Sci. 13: 809723. 10.3389/fpls.2022.809723
Tang, D., Wei, F., Cai, Z., Wei, Y., Khan, A., Miao, J., and Wei, K. 2021. Analysis of codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth. Dev Genes Evol. 231: 1–9. 10.1007/s00427-020-00670-9
Teo, Y.L., Raynor, T.J., Ellajosyula, K.R., and Knabel, S.J. 1996. Synergistic effect of high temperature and high pH on the destruction of Salmonella enteritidis and Escherichia coli 0157:H7. J Food Prot. 59(10): 1023–1030. 10.4315/0362-028X-59.10.1023
Tirloni, E., Stella, S., Celandroni, F., Mazzantini, D., Bernardi, C., and Ghelardi, E. 2022 Bacillus cereus in dairy products and production plants. Foods. 11(17): 2572. 10.3390/foods11172572
Tournas, V., Stack, M.E., Mislivec, P.B., Koch, H.A., and Bandler, R. 2001. Yeasts, molds, and mycotoxin. In: Bacteriological Analytical Manual, Chap 18. The United States Food and Drug Administration, Silver Spring, MD. Available at: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-18-yeasts-molds-and-mycotoxins (Accessed on: 20 September 2024).
Wang, H., and Qin, L. 2014. Determination of natural benzoic acid in different Mesona Chinensis Benth. China Pharm. 12: 1493–1495.
Wongverawattanakul, C., Suklaew, P., Chusak, C., Adisakwattana, S., and Thilavech, T. 2022. Encapsulation of Mesona chinensis Benth extract in alginate beads enhances the stability and antioxidant activity of polyphenols under simulated gastrointestinal digestion. Foods. 11: 2378. 10.3390/foods11152378
Xiao, L., Lu, X., Yang, H., Lin, C., Li, L., Ni, C., Fang, Y., Mo, S., Zhan, R., and Yan, P. 2022. The antioxidant and hypolipidemic effects of Mesona Chinensis benth extracts. Molecules. 27: 3423. 10.3390/molecules27113423
Yan, L., Xiong, C., Xu, P., Zhu, J., Yang, Z., Ren, H., and Luo, Q. 2019. Structural characterization and in vitro antitumor activity of A polysaccharide from Artemisia annua L. (Huang Huahao). Carbohydr Polym. 213: 361–369. 10.1016/j.carbpol.2019.02.081
Yang, M., Xu, Z., Zhang, R., Zhan, P., Wen, Y., Shen, Y., and Zhang, X. 2008. Protection of myocardium in streptozotocin-induced diabetic rats by water extracts of Hsian-tsao (Mesona procumbens Hemsl.). Asia Pac J Clin Nutr. 17: 23–29. https://apjcn.nhri.org.tw/server/APJCN/17/1/23.pdf
Yeh, C.T., Huang, W.H., and Yen, G.C. 2009. Antihypertensive effects of Hsian-tsao and its active compound in spontaneously hypertensive rats. J Nutr Biochem. 20: 866–875. 10.1016/j.jnutbio.2008.07.015
Yen, G., Duh, P., and Hung, Y. 2001. Contributions of major components to the antimutagenic effect of Hsian-tsao (Mesona procumbens Hemsl.). J Agric Food Chem. 49: 5000–5004. 10.1021/jf0103929
Yen, G.C and Hsieh, G.L. 1997. Antioxidant effects on dopamine and relate compound. Biosci Biotechnol Biochem. 61: 1646–1649. 10.1271/bbb.61.1646
Yen, G.C., and Hung, C.Y. 2000. Effects of alkaline and heat treatment on antioxidative activity and total phenolics of extracts from Hsian-tsao (Mesona procumbens Hemsl.). J Food Res Int. 33(6): 487–492.
Zhong, Z., Zhang, S., Wang, H., Yang, J., Li, L., Zhu, J., and Liu, Y. 2022. Ultrasound-alkaline combined extraction improves the release of bound polyphenols from pitahaya (Hylocereus undatus “Foo-Lon”) peel: composition, antioxidant activities and enzyme inhibitory activity. Ultrason Sonochem. 90: 106213. 10.1016/j.ultsonch.2022.106213
Zhou, K., and Yu, L. 2006. Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. Lebensmittel Wissenschaft Technol. 39: 1155–1162. 10.1016/j.lwt.2005.07.015