Enhancing stability and bioactivity of Chondrus ocellatus polyphenols through nanoparticle fabrication

Main Article Content

Jinyang Shen
Yue Zhou
Xue Li
Xinxin Zhang
Caiping Liu
Luqian Cao
Feiyang Zhou
Shicheng Zhang
Yuexia Zhu
Kunming Qin

Keywords

antioxidative stability, characterization, Chondrus ocellatus, nanoparticle, polyphenols, preparation

Abstract

This article aimed to fabricate Chondrus ocellatus polyphenols (COPs)-gelatin-chitosan nanoparticles to enhance their stability and bioactivity. Different preparation conditions were tested to investigate the effects of formulation on nanoparticle fabrication. Free radical scavenging activity of COPs and their nanoparticles were compared. The consequences revealed that optimal preparation was obtained with a chitosan (CS) concentration of 0.5 mg/mL, gelatin (Gel) concentration of 1.0 mg/mL, COPs concentration of 5.0 mg/mL, and Gel-CS-COPs mass ratio of 2:1:1. The resultant nanoparticles had the particle size of 39.79 ± 5.15 nm and encapsulation efficiency of 60.95 % ± 1.86 %. The COPs-Gel-CS nanoparticles were distributed uniformly, and no obvious aggregation was observed by transmission electron microscopy. Nanoencapsulation of the COPs significantly improved their antioxidative stability. This study provided a potential formulation for the application of Chondrus ocellatus polyphenols in antioxidant activities.

Abstract 143 | PDF Downloads 77 HTML Downloads 0 XML Downloads 10

References

Alizadeh, N., and Nazari, F., 2022. Thymol essential oil/β-cyclodextrin inclusion complex into chitosan nanoparticles: Improvement of thymol properties in vitro studies. Journal of Molecular Liquids. 346(2): 118250. 10.1016/j.molliq.2021.118250

Bu, Q., Chen, Y., Ding, Y., Zhang, K.X., Li, Y.C., You, X.Y., et al., 2023. Preparation and characterization of tea polyphenol composite microspheres encapsulated using sodium alginate and crosslinked starch. LWT. 184: 114888. 10.1016/j.lwt.2023.114888

Carbonaro, M., Grant, G., and Pusztai, A., 2001. Evaluation of polyphenol bioavailability in rat small intestine. European Journal of Nutrition. 40(2): 84–90. 10.1007/s003940170020

Chanphai, P., and Tajmir-Riahi, H.A., 2018. Binding analysis of antioxidant polyphenols with PAMAM nanoparticles. Journal of Biomolecular Structure and Dynamics. 36(13): 3487–3495. 10.1080/07391102.2017.1391124

Chen, H., Lin, S., Wu, J., Xu, Y., Cai, X., and Wang, S., 2023. The structure, antioxidant activity, and stability of fish gelatin/chitooligosaccharide nanoparticles loaded with apple polyphenols. Journal of Science of Food and Agriculture. 103(8): 4211–4220. 10.1002/jsfa.12455

Cheng, X., Zou, Q., Zhang, H., Zhu, J., Hasan, M., Dong, F., et al., 2023. Effects of a chitosan nanoparticles encapsulation on the properties of litchi polyphenols. Food Science and Biotechnology. 32(13): 1861–1871. 10.1007/s10068-023-01303-3

Dube, A., Nicolazzo, J.A., and Larson, I., 2010. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. European Journal of Pharmaceutical Sciences. 41(2): 219–225. 10.1016/j.ijpharm.2021.121382

Fernando, I.P.S., Kim, M., Son, K.T., Jeong, Y., and Jeon, Y.J., 2016. Antioxidant activity of marine algal polyphenolic compounds: A mechanistic approach. Journal of Medicinal Food. 19(7): 615–628. 10.1089/jmf.2016.3706

Gaumet, M., Vargas, A., Gurny, R., and Delie, F., 2008. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. European Journal of Pharmaceutics and Biopharmaceutics. 69(1): 1–9. 10.1016/j.ejpb.2007.08.001

Guo, Y., Sun, Q., Wu, F.-G., Dai, Y., and Chen, X., 2021. Polyphenol-containing nanoparticles: Synthesis, properties, and therapeutic delivery. Advanced Materials. 33(22): 2007356. 10.1002/adma.202007356

Jayawardhana, H.H., Jayawardena, T.U., Sanjeewa, K.K.A., Liyanage, N.M., Nagahawatta, D.P., Lee, H.G., et al., 2023. Marine algal polyphenols as skin protective agents: Current status and future prospectives. Marine Drugs. 21(5): 285. 10.3390/md21050285

Lee, E.J., Khan, S.A., and Lim, K.H., 2011. Gelatin nanoparticle preparation by nanoprecipitation. Journal of Biomaterial Science, Polymer Edition. 22(4): 753–771. 10.1163/092050610X492093

Lee, I.C., Lee, J.S., Lee, J.H., Kim, Y., and So, W.Y., 2019. Anti-oxidative and anti-inflammatory activity of Kenya Grade AA green coffee bean extracts. Iranian Journal of Public Health. 48(11): 2025–2034. 10.18502/ijph.v48i11.3521

Li, D., Zhu, M., Liu, X., Wang, Y., and Cheng, J., 2020. Insight into the effect of microcapsule technology on the processing stability of mulberry polyphenols. LWT. 126: 109144. 10.1016/j.lwt.2020.109144

Liang, J., Yan, H., Puligundla, P., Gao, X., Zhou, Y., and Wan, X., 2017. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: A review. Food Hydrocolloids. 69: 286–292. 10.1016/j.foodhyd.2017.01.041

Luong, P.H., Nguyen, T.C., and Pham, T.D., 2021. Preparation and assessment of some characteristics of nanoparticles based on sodium alginate, chitosan, and Camellia chrysantha polyphenols. International Journal of Polymer Science. 2021: 5581177. 10.1080/07391102.2017.1391124

Lv, Y., He, H., Qi, J., Lu, Y., Zhao, W., Dong, W., et al., 2018. Visual validation of the measurement of entrapment efficiency of drug nanocarriers. International Journal of Pharmaceutics. 547(1): 395–403. 10.1016/j.ijpharm.2018.06.025

Ma, Y., Li, S., Ji, T., Wu, W., Sameen, D.E., Ahmed, S., et al., 2020. Development and optimization of dynamic gelatin/chitosan nanoparticles incorporated with blueberry anthocyanins for milk freshness monitoring. Carbohydrate Polymers. 247: 116738. 10.1016/j.carbpol.2020.116738

Mathew, S.A., and Arumainathan, S., 2022. Crosslinked chitosan–gelatin biocompatible nanocomposite as a neuro drug carrier. ACS Omega. 7(22): 18732–18744. 10.1021/acsomega.2c01443

Menezes, P.P., Serafini, M.R., de Carvalho, Y., Santana, D.V.S., Lima, B.S., Quintans-Júnior, L.J., et al., 2016. Kinetic and physical-chemical study of the inclusion complex of β-cyclodextrin containing carvacrol. Journal of Molecular Structure. 1125: 323–330. 10.1016/j.molstruc.2016.06.062

Mohanraj, V.J., and Chen, Y., 2006. Nanoparticles-a review. Tropical Journal of Pharmaceutical Research. 5(1): 561–573. 10.4314/tjpr.v5i1.14634

Pillai, C.K.S., Paul, W., and Sharma, C.P., 2009. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science. 34(7): 641–678. 10.1016/j.progpolymsci.2009.04.001

Rezazadeh, N.H., Buazar, F., and Matroodi, S., 2020. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles. Scientific Reports. 10(1): 19615. 10.1038/s41598-020-76726-7

Roger, E., Lagarce, F., Garcion, E., and Benoit, J.P., 2010. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine (London, England). 5(2): 287–306. 10.2217/nnm.09.110

Sethi, S., Medha, Kaith BS., 2022. A review on chitosan-gelatin nanocomposites: Synthesis, characterization and biomedical applications. Reactive and Functional Polymers. 179: 105362. 10.1016/j.reactfunctpolym.2022.105362

Sethi S, Medha, K., and Singh, G., 2022. Fluorescent hydrogel of chitosan and gelatin cross-linked with maleic acid for optical detection of heavy metals. Journal of Applied Polymer Science. 13(15): 5581177. 10.1002/app.51941

Stark, W.J., Stoessel, P.R., Wohlleben, W., and Haffner, A., 2015. Industrial applications of nanoparticles. Chemical Society Reviews. 44(16): 5793–5805. 10.1039/c4cs00362d

Sun, C., Cao, J., Wang, Y., Huang, L., Chen, J., Wu, J., et al., 2022. Preparation and characterization of pectin-based edible coating agent encapsulating carvacrol/HPβCD inclusion complex for inhibiting fungi. Food Hydrocolloids. 125: 107374. 10.1016/j.foodhyd.2021.107374

Sun, L., Lu, B., Liu, Y., Wang, Q., and Zhao, C., 2021. Synthesis, characterization and antioxidant activity of quercetin derivatives. Synthetic Communications. 51(19): 2944–2953. 10.1080/00397911.2021.1942059

Sun, M., Xie, Q., Cai, X., Liu, Z., Wang, Y., and Dong, X., et al., 2020. Preparation and characterization of epigallocatechin gallate, ascorbic acid, gelatin, chitosan nanoparticles and their beneficial effect on wound healing of diabetic mice. International Journal of Biological Macromolecules. 148: 777–784. 10.1016/j.ijbiomac.2020.01.198

Tao, X., Shi, H., Cao, A., Cai, L., 2022. Understanding of physicochemical properties and antioxidant activity of ovalbumin–sodium alginate composite nanoparticle-encapsulated kaempferol/tannin acid. RSC Advances. 12(28): 18115–18126. 10.1039/D2RA02708A

Thomas, N.V., and Kim, S.K., 2011. Pharmacological applications of polyphenolic derivatives from marine brown algae. Environmental Toxicology and Pharmacology. 32(3): 325–335. 10.1016/j.etap.2011.09.004

Yang, B., Dong, Y., Wang, F., and Zhang, Y., 2020. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules. 25(20): 4613. 10.3390/molecules25204613

Yang, W., Xie, D., Liang, Y., Chen, N., Xiao, B., Duan, L., et al., 2022. Multi-responsive fibroin-based nanoparticles enhance anti-inflammatory activity of kaempferol. Journal of Drug Delivery Science and Technology. 68: 103025. 10.1016/j.jddst.2021.103025

Young, S., Wong, M., Tabata, Y., and Mikos, A.G., 2005. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release. 109(1): 256–274. 10.1016/j.jconrel.2005.09.023

Zhang, Y., Meng, C., Chang, J., Sha, S., Chen, H., and Lu, S., 2014. Preparation and characterization of a self-assembled tea polyphenol-gelatin-chitosan nanoparticles. Journal of China Pharmaceutical University. 68(14): 1399–1403. 10.1631/jzus.B1000073

Zhou, G., Xin, H., Sheng, W., Sun, Y., Li, Z., and Xu, Z., 2005. In vivo growth-inhibition of S180 tumor by mixture of 5-Fu and low molecular λ-carrageenan from Chondrus ocellatus. Pharmacological Research. 51(2): 153–157. 10.1016/j.phrs.2004.07.003

Zhu, Y., Chen, W., Kong, L., Zhou, B., Hua, Y., Han, Y., et al., 2022. Optimum conditions of ultrasound-assisted extraction and pharmacological activity study for phenolic compounds of the alga Chondrus ocellatus. Journal of Food Processing and Preservation. 46(3): e16400. 10.1111/jfpp.16400

Zou, T., Percival, S.S., Cheng, Q., Li, Z., Rowe, C.A., and Gu, L., 2012. Preparation, characterization, and induction of cell apoptosis of cocoa procyanidins–gelatin–chitosan nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. 82(1): 36–42. 10.1016/j.ejpb.2012.05.006