Enhancing stability and bioactivity of Chondrus ocellatus polyphenols through nanoparticle fabrication
Main Article Content
Keywords
antioxidative stability; characterization; Chondrus ocellatus; nanoparticle; polyphenols; preparation
Abstract
This article aimed to fabricate Chondrus ocellatus polyphenols (COPs)-gelatin-chitosan nanoparticles to enhance their stability and bioactivity. Different preparation conditions were tested to investigate the effects of formulation on nanoparticle fabrication. Free radical scavenging activity of COPs and their nanoparticles were compared. The consequences revealed that optimal preparation was obtained with a chitosan (CS) concentration of 0.5 mg/mL, gelatin (Gel) concentration of 1.0 mg/mL, COPs concentration of 5.0 mg/mL, and Gel-CS-COPs mass ratio of 2:1:1. The resultant nanoparticles had the particle size of 39.79 ± 5.15 nm and encapsulation efficiency of 60.95 % ± 1.86 %. The COPs-Gel-CS nanoparticles were distributed uniformly, and no obvious aggregation was observed by transmission electron microscopy. Nanoencapsulation of the COPs significantly improved their antioxidative stability. This study provided a potential formulation for the application of Chondrus ocellatus polyphenols in antioxidant activities.
References
Bu, Q., Chen, Y., Ding, Y., Zhang, K.X., Li, Y.C., You, X.Y., et al., 2023. Preparation and characterization of tea polyphenol composite microspheres encapsulated using sodium alginate and crosslinked starch. LWT. 184: 114888. https://doi.org/10.1016/j.lwt.2023.114888
Carbonaro, M., Grant, G. and Pusztai, A., 2001. Evaluation of polyphenol bioavailability in rat small intestine. European Journal of Nutrition. 40(2): 84–90. https://doi.org/10.1007/s003940170020
Chanphai, P. and Tajmir-Riahi, H.A., 2018. Binding analysis of antioxidant polyphenols with PAMAM nanoparticles. Journal of Biomolecular Structure and Dynamics. 36(13): 3487–3495. https://doi.org/10.1080/07391102.2017.1391124
Chen, H., Lin, S., Wu, J., Xu, Y., Cai, X. and Wang, S., 2023. The structure, antioxidant activity, and stability of fish gelatin/chitooligosaccharide nanoparticles loaded with apple polyphenols. Journal of Science of Food and Agriculture. 103(8): 4211–4220; https://doi.org/10.1002/jsfa.12455
Cheng, X., Zou, Q., Zhang, H., Zhu, J., Hasan, M., Dong, F., et al., 2023. Effects of a chitosan nanoparticles encapsulation on the properties of litchi polyphenols. Food Science and Biotechnology. 32(13): 1861–1871. https://doi.org/10.1007/s10068-023-01303-3
Dube, A., Nicolazzo, J.A. and Larson, I., 2010. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. European Journal of Pharmaceutical Sciences. 41(2): 219–225. https://doi.org/10.1016/j.ijpharm.2021.121382
Fernando, I.P.S., Kim, M., Son, K.T., Jeong, Y. and Jeon, Y.J., 2016. Antioxidant activity of marine algal polyphenolic compounds: A mechanistic approach. Journal of Medicinal Food. 19(7): 615–628. https://doi.org/10.1089/jmf.2016.3706
Gaumet, M., Vargas, A., Gurny, R. and Delie, F., 2008. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. European Journal of Pharmaceutics and Biopharmaceutics. 69(1): 1–9. https://doi.org/10.1016/j.ejpb.2007.08.001
Guo, Y., Sun, Q., Wu, F.-G., Dai, Y. and Chen, X., 2021. Polyphenol-containing nanoparticles: Synthesis, properties, and therapeutic delivery. Advanced Materials. 33(22): 2007356. https://doi.org/10.1002/adma.202007356
Jayawardhana, H.H., Jayawardena, T.U., Sanjeewa, K.K.A., Liyanage, N.M., Nagahawatta, D.P., Lee, H.G., et al., 2023. Marine algal polyphenols as skin protective agents: Current status and future prospectives. Marine Drugs. 21(5): 285. https://doi.org/10.3390/md21050285
Lee, E.J., Khan, S.A. and Lim, K.H., 2011. Gelatin nanoparticle preparation by nanoprecipitation. Journal of Biomaterial Science, Polymer Edition. 22(4): 753–771; https://doi.org/10.1163/092050610X492093
Lee, I.C., Lee, J.S., Lee, J.H., Kim, Y. and So, W.Y., 2019. Anti-oxidative and anti-inflammatory activity of Kenya Grade AA green coffee bean extracts. Iranian Journal of Public Health. 48(11): 2025–2034. https://doi.org/10.18502/ijph.v48i11.3521
Li, D., Zhu, M., Liu, X., Wang, Y. and Cheng, J., 2020. Insight into the effect of microcapsule technology on the processing stability of mulberry polyphenols. LWT. 126: 109144. https://doi.org/10.1016/j.lwt.2020.109144
Liang, J., Yan, H., Puligundla, P., Gao, X., Zhou, Y. and Wan, X., 2017. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: A review. Food Hydrocolloids. 69: 286–292. https://doi.org/10.1016/j.foodhyd.2017.01.041
Luong, P.H., Nguyen, T.C. and Pham, T.D., 2021. Preparation and assessment of some characteristics of nanoparticles based on sodium alginate, chitosan, and Camellia chrysantha polyphenols. International Journal of Polymer Science. 2021: 5581177. https://doi.org/10.1080/07391102.2017.1391124
Lv, Y., He, H., Qi, J., Lu, Y., Zhao, W., Dong, W., et al., 2018. Visual validation of the measurement of entrapment efficiency of drug nanocarriers. International Journal of Pharmaceutics. 547(1): 395–403. https://doi.org/10.1016/j.ijpharm.2018.06.025
Ma, Y., Li, S., Ji, T., Wu, W., Sameen, D.E., Ahmed, S., et al., 2020. Development and optimization of dynamic gelatin/chitosan nanoparticles incorporated with blueberry anthocyanins for milk freshness monitoring. Carbohydrate Polymers. 247: 116738. https://doi.org/10.1016/j.carbpol.2020.116738
Mathew, S.A. and Arumainathan, S., 2022. Crosslinked chitosan–gelatin biocompatible nanocomposite as a neuro drug carrier. ACS Omega. 7(22): 18732–18744. https://doi.org/10.1021/acsomega.2c01443
Menezes, P.P., Serafini, M.R., de Carvalho, Y., Santana, D.V.S., Lima, B.S., Quintans-Júnior, L.J., et al., 2016. Kinetic and physical-chemical study of the inclusion complex of β-cyclodextrin containing carvacrol. Journal of Molecular Structure. 1125: 323–330. https://doi.org/10.1016/j.molstruc.2016.06.062
Mohanraj, V.J. and Chen, Y., 2006. Nanoparticles-a review. Tropical Journal of Pharmaceutical Research. 5(1): 561–573. https://doi.org/10.4314/tjpr.v5i1.14634
Pillai, C.K.S., Paul, W. and Sharma, C.P., 2009. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science. 34(7): 641–678. https://doi.org/10.1016/j.progpolymsci.2009.04.001
Rezazadeh, N.H., Buazar, F. and Matroodi, S., 2020. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles. Scientific Reports. 10(1): 19615. https://doi.org/10.1038/s41598-020-76726-7
Roger, E., Lagarce, F., Garcion, E. and Benoit, J.P., 2010. Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine (London, England). 5(2): 287–306. https://doi.org/10.2217/nnm.09.110
Sethi, S., Medha, Kaith BS., 2022. A review on chitosan-gelatin nanocomposites: Synthesis, characterization and biomedical applications. Reactive and Functional Polymers. 179: 105362. https://doi.org/10.1016/j.reactfunctpolym.2022.105362
Sethi S, Medha, K. and Singh, G., 2022. Fluorescent hydrogel of chitosan and gelatin cross-linked with maleic acid for optical detection of heavy metals. Journal of Applied Polymer Science. 13(15): 5581177. https://doi.org/10.1002/app.51941
Stark, W.J., Stoessel, P.R., Wohlleben, W. and Haffner, A., 2015. Industrial applications of nanoparticles. Chemical Society Reviews. 44(16): 5793–5805. https://doi.org/10.1039/c4cs00362d
Sun, C., Cao, J., Wang, Y., Huang, L., Chen, J., Wu, J., et al., 2022. Preparation and characterization of pectin-based edible coating agent encapsulating carvacrol/HPβCD inclusion complex for inhibiting fungi. Food Hydrocolloids. 125: 107374. https://doi.org/10.1016/j.foodhyd.2021.107374
Sun, L., Lu, B., Liu, Y., Wang, Q. and Zhao, C., 2021. Synthesis, characterization and antioxidant activity of quercetin derivatives. Synthetic Communications. 51(19): 2944–2953. https://doi.org/10.1080/00397911.2021.1942059
Sun, M., Xie, Q., Cai, X., Liu, Z., Wang, Y. and Dong, X., et al., 2020. Preparation and characterization of epigallocatechin gallate, ascorbic acid, gelatin, chitosan nanoparticles and their beneficial effect on wound healing of diabetic mice. International Journal of Biological Macromolecules. 148: 777–784. https://doi.org/10.1016/j.ijbiomac.2020.01.198
Tao, X., Shi, H., Cao, A., Cai, L., 2022. Understanding of physicochemical properties and antioxidant activity of ovalbumin–sodium alginate composite nanoparticle-encapsulated kaempferol/tannin acid. RSC Advances. 12(28): 18115–18126. https://doi.org/10.1039/D2RA02708A
Thomas, N.V. and Kim, S.K., 2011. Pharmacological applications of polyphenolic derivatives from marine brown algae. Environmental Toxicology and Pharmacology. 32(3): 325–335. https://doi.org/10.1016/j.etap.2011.09.004
Yang, B., Dong, Y., Wang, F. and Zhang, Y., 2020. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules. 25(20): 4613. https://doi.org/10.3390/molecules25204613
Yang, W., Xie, D., Liang, Y., Chen, N., Xiao, B., Duan, L., et al., 2022. Multi-responsive fibroin-based nanoparticles enhance anti-inflammatory activity of kaempferol. Journal of Drug Delivery Science and Technology. 68: 103025. https://doi.org/10.1016/j.jddst.2021.103025
Young, S., Wong, M., Tabata, Y. and Mikos, A.G., 2005. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release. 109(1): 256–274. https://doi.org/10.1016/j.jconrel.2005.09.023
Zhang, Y., Meng, C., Chang, J., Sha, S., Chen, H. and Lu, S., 2014. Preparation and characterization of a self-assembled tea polyphenol-gelatin-chitosan nanoparticles. Journal of China Pharmaceutical University. 68(14): 1399–1403. https://doi.org/10.1631/jzus.B1000073
Zhou, G., Xin, H., Sheng, W., Sun, Y., Li, Z. and Xu, Z., 2005. In vivo growth-inhibition of S180 tumor by mixture of 5-Fu and low molecular λ-carrageenan from Chondrus ocellatus. Pharmacological Research. 51(2): 153–157. https://doi.org/10.1016/j.phrs.2004.07.003
Zhu, Y., Chen, W., Kong, L., Zhou, B., Hua, Y., Han, Y., et al., 2022. Optimum conditions of ultrasound-assisted extraction and pharmacological activity study for phenolic compounds of the alga Chondrus ocellatus. Journal of Food Processing and Preservation. 46(3): e16400. https://doi.org/10.1111/jfpp.16400
Zou, T., Percival, S.S., Cheng, Q., Li, Z., Rowe, C.A. and Gu, L., 2012. Preparation, characterization, and induction of cell apoptosis of cocoa procyanidins–gelatin–chitosan nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. 82(1): 36–42. https://doi.org/10.1016/j.ejpb.2012.05.006