Extraction and characterization of cellulose from agricultural waste of hemp (Cannabis sativa) and parthenium (Parthenium hysterophorus)

Main Article Content

Muhammad Usman
Afia Zia
Muhammad Nauman Ahmad
Sahib Alam
Niamat Ullah
Muhammad Baseer Us Salam
Tariq Aziz
Majid Alhomrani
Walaa F. Alsanie
Abdulhakeem S. Alamri

Keywords

circular economy, eco-friendly bioproducts, hemp’s cellulose, parthenium’s cellulose

Abstract

The current study focused on the extraction of cellulose from two selected plants, hemp (Cannabis sativa) and parthenium (Parthenium hysterophorus). The research successfully isolated high-purity cellulose from both plants using a chlorination and alkaline extraction process. A higher yield (%) (38.4 ± 0.18) was obtained from hemp compared to parthenium (22 ± 0.82). Characterization techniques were used to probe the structure and properties of the extracted cellulose. Fourier transform infrared spectroscopy analysis revealed functional groups characteristic of cellulose, while X-ray diffraction confirmed its highly crystalline structure in both samples. Scanning electron microscopy provided valuable insights into the cellulose morphology, indicating a smoother surface and reduced fiber diameter after treatment due to the removal of noncellulosic components. The research paved the way for the development of eco-friendly bioproducts utilizing cellulose from hemp and parthenium, promoting a more sustainable future.

Abstract 409 | PDF Downloads 310 HTML Downloads 0 XML Downloads 237

References

Alemdar, A., and Sain, M., 2008. Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresource Technology. 99: 1664–1671. 10.1016/j.biortech.2007.04.029

Areeba, S., Asma, C., Ayesha, A., Nageen, H., Sumaira, N., Tariq, A., and Abdullah, F.A., 2024. Determination of hydrolyzing and ethanolic potential of cellulolytic bacteria isolated from fruit waste. Italian Journal of Food Science. 36(1): 127–141. 10.15586/ijfs.v36i1.2470

Asma, C., Ayesha, A., Smavia, Y., Nimra, B., Nageen, H., Sumaira, N., Tariq, A., and Thamer, H.A., 2024. Statistical optimization for comparative hydrolysis and fermentation for hemicellulosic ethanolgenesis. Italian Journal of Food Science. 36(2): 231–245. 10.15586/ijfs.v36i2.2526

Avolio, R., Bonadies, I., Capitani, D., Errico, M., Gentile, G., and Avella, M.A., 2012. Multitechnique approach to assess the effect of ball milling on cellulose. Carbohydrate Polymers. 87: 265–273. 10.1016/j.carbpol.2011.07.047

Azizi Samir, M.A.S., Alloin, F., and Dufresne, A., 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 6(2): 612–626. 10.1021/bm0493685

Aziz, T., Shah, Z., Sarwar, A., Ullah, N., Sameeh, M.Y., Cui, H., and Lin, L., 2023. Production of bioethanol from pretreated rice straw, an integrated and mediated upstream fermentation process. Biomass Conversion and Biorefinery. 2023: 1–9. 10.1007/s13399-023-04283-w

Bian, J., Peng, F., Peng, X.P., Peng, P., Xu, F., and Sun, R.C., 2012. Acetic acid enhanced purification of crude cellulose from sugarcane bagasse: structural and morphological characterization. BioResources. 7(4): 4626–4639. 10.15376/biores.7.4.4626-4639

Boutheina, D., Amel, M., Sami, K., Fatma, B.S., and Bassem, M., 2022. Agricultural water management practices in Mena region facing climatic challenges and water scarcity. Water Conservation & Management (WCM). 6(1): 39–44. 10.26480/wcm.01.2022.39.44

Chakraborty, S., Kundu, S.P., Roy, A., Adhikari, B., and Majumder, S.B. 2013. Polymer modified jute fibre as reinforcing agent controlling the physical and mechanical characteristics of cement mortar. Construction and Building Materials. 49: 214–222. 10.1016/j.conbuildmat.2013.08.025

Chandrahasa, R., Rajamane, N.P., and Jeyalakshmi, R. (2014). Development of cellulose nanofibres from coconut husk. International Journal of Emerging Technology and Advanced Engineering, 4(4), 88-93. 10.1016/j.indcrop.2023.116607

Cheng, S., Cheng, X., Tahir, M.H., Wang, Z., and Zhang, J., 2024. Synthesis of rice husk activated carbon by fermentation osmotic activation method for hydrogen storage at room temperature. International Journal of Hydrogen Energy. 62: 443–450. 10.1016/j.ijhydene.2024.03.092

Chi, X., Liu, C., Bi, Y.-H., Yu, G., Zhang, Y., Wang, Z., Li, B., and Cui, Q.A., 2019. Clean and effective potassium hydroxide pretreatment of corncob residue for the enhancement of enzymatic hydrolysis at high solids loading. RSC Advances. 9: 11558–11566. 10.1039/c9ra01555h

Das, A.M., Hazarika, M.P., Goswami, M., Yadav, A., and Khound, P., 2016. Extraction of cellulose from agricultural waste using Montmorillonite K-10/LiOH and its conversion to renewable energy: biofuel by using Myrothecium gramineum. Carbohydrate Polymers. 141: 20–27. 10.1016/j.carbpol.2015.12.070

Davidson, R.S., Choudhury, H., Origgi, S., Castellan, A., Trichet, V., and Capretti, G., 1995. The reaction of phloroglucinol in the presence of acid with lignin-containing materials. Journal of Photochemistry and Photobiology A: Chemistry. 91(1): 87–93. 10.1016/1010-6030(95)04101-K

De France, K.J., Hoare, T., and Cranston, E.D., 2017. Review of hydrogels and aerogels containing nanocellulose. Chemistry of Materials. 29(11): 4609–4631. 10.1021/acs.chemmater.7b00531

Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Peijs, T., et al., 2010. Current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science. 45: 1–33. 10.1007/s10853-009-3874-0

Fike, J., 2016. Industrial hemp: renewed opportunities for an ancient crop. Critical Reviews in Plant Sciences. 35: 406–424. 10.1080/07352689.2016.1257842

Fortunati, E., Puglia, D., Monti, M., Santulli, C., Maniruzzaman, M., and Kenny, J.M., 2012. Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. Journal of Applied Polymer Science. 128(5): 3220–3230. 10.1002/app.38524

Gong, J., Li, J., Xu, J., Xiang, Z., and Mo, L., 2017. Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Advances. 7(53): 33486–33493. 10.1039/C7RA06222B

Han, G., Huan, S., Han, J., Zhang, Z., and Wu, Q., 2014. Effect of acid hydrolysis conditions on the properties of cellulose nanoparticle-reinforced polymethylmethacrylate composites. Materials (Basel). 7: 16–29. 10.3390/ma7010016

Harini, K., Ramya, K., and Sukumar, M., 2018. Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose. Carbohydrate polymers, 201, 329-339. 10.1016/j.carbpol.2018.08.081

Jabbar, A., Militký, J., Ali, A., and Javed, M.U., 2017. Mechanical behavior of nanocellulose coated jute/green epoxy composites. IOP Conference Series: Materials Science and Engineering. 254(4): 42015.

Johar, N., Ahmad, I., and Dufresne, A., 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products. 37(1): 93–99. 10.1016/j.indcrop.2011.12.016

Ju, X., Bowden, M., Brown, E.E., and Zhang, X., 2015. An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydrate Polymers. 123: 476–481. 10.1016/j.carbpol.2014.12.071

Kabir, M.M., Wang, H., Lau, K.T., and Cardona, F., 2013. Effects of chemical treatments on hemp fibre structure. Applied Surface Science. 276: 13–23. 10.1016/j.apsusc.2013.02.086

Khan, S., Siddique, R., Huanfei, D., Shereen, M.A., Nabi, G., Bai, Q., et al. 2021. Perspective applications and associated challenges of using nanocellulose in treating bone-related diseases. Frontiers in Bioengineering and Biotechnology. 9: 616555. 10.3389/fbioe.2021.616555

Kim, M.N., Ahammed, S., Aziz, T., Alasmari, F., Sameeh, M.Y., Cui, H., and Lin, L., 2024. Characterization of composite film containing polyvinyl alcohol cross-linked with dialdehyde cellulose using citric acid as a catalyst for sustainable packaging. Packaging Technology and Science. 1–13 10.1002/pts.2841

Kono, H., Erata, T., and Takai, M., 2003. Complete assignment of the CP/MAS 13C NMR spectrum of cellulose IIII. Macromolecules. 36(10): 3589–3592. 10.1021/ma021015f

Krishnan, V.N., and Ramesh, A., 2013. Synthesis and characterization of cellulose nanofibers from coconut coir fibers. IOSR Journal of Applied Chemistry. 6: 18–23.

Lewandowska, K., 2017. Surface properties of chitosan composites with poly (N-vinylpyrrolidone) and montmorillonite. Polymer Science, Series A. 59 : 215–222. 10.1134/S0965545X17020043

Manaia, J.P., Manaia, A.T., and Rodriges, L., 2019. Industrial hemp fibers: an overview. Fibers. 7: 106.

McKendry, P., 2002. Energy production from biomass (Part 1): overview of biomass. Bioresource Technology. 83(1): 37–46.

Naik, S.N., Goud, V.V., Rout, P.K., and Dalai, A.K., 2010. Production of first and second generation biofuels: a comprehensive review. Renewable and Sustainable Energy Reviews. 14(2): 578–597. 10.1016/j.rser.2009.10.003

Naithani, S., Chhetri, R.B., Pande, P.K., and Naithani, G., 2008. Evaluation of parthenium for pulp and paper making. Indian Journal of Weed Science. 40(3&4): 188–191.

Nakano, J., and Meshitsuka, G., 1992. The detection of lignin. In: Lin, Y.L., Dence, C.W., (eds.). Methods in lignin chemistry. Springer, Berlin, Heidelberg. pp.23–32. 10.1007/978-3-642-74065-7_2

Nasreen, S., and Ashraf, M.A., 2020Inadequate supply of water in agriculture sector of Pakistan due to depleting water reservoirs and redundant irrigation system. Water Conservation & Management. 5(1): 13–19. 10.26480/wcm.01.2021.13.19

Nigam, S., Das, A.K., and Patidar, M.K., 2021. Valorization of Parthenium hysterophorus weed for cellulose extraction and its application for bioplastic preparation. Journal of Environmental Chemical Engineering. 9(4): 105424. 10.1016/j.jece.2021.105424

Nishino, T., Matsuda, I., and Hirao, K., 2004. All-cellulose composite. Macromolecules. 37(20): 7683–7687. 10.1016/j.coco.2018.04.008

Obi Reddy, K., Shukla, M., Uma Maheswari, C., and Varada Rajulu, A., 2012. Mechanical and physical characterization of sodium hydroxide treated Borassus fruit fibers. Journal of Forestry Research. 23: 667–674. 10.1007/s11676-012-0308-7

Perumal, A.B., Sellamuthu, P.S., Nambiar, R.B., Sadiku, E.R., Phiri, G., and Jayaramudu, J., 2018. Effects of multiscale rice straw (Oryza sativa) as reinforcing filler in montmorillonite-polyvinyl alcohol biocomposite packaging film for enhancing the storability of postharvest mango fruit (Mangifera indica L.). Applied Clay Science. 158: 1–10. 10.1016/j.clay.2018.03.008

Rashid, S., and Dutta, H., 2020. Characterization of nanocellulose extracted from short, medium and long grain rice husks. Industrial Crops and Products. 154: 112627. 10.1016/j.indcrop.2020.112627

Reddy, K.O., Uma Maheswari, C., Muzenda, E., Shukla, M., and Rajulu, A.V., 2016. Extraction and characterization of cellulose from pretreated ficus (peepal tree) leaf fibers. Journal of Natural Fibers. 13(1): 54–64. 10.1080/15440478.2014.984055

Rehman, M., Fahad, S., Du, G., Cheng, X., Yang, Y., Tang, K., et al., 2021. Evaluation of hemp (Cannabis sativa L.) as an industrial crop: a review. Environmental Science and Pollution Research. 28(38): 52832–52843. 10.1007/s11356-021-16264-5

Rehman, M.S.U., Rashid, N., Saif, A., Mahmood, T., and Han, J.I., 2013. Potential of bioenergy from industrial hemp (Cannabis sativa): Pakistan perspective. Renewable Sustainable Energy Reviews. 18: 154–164. 10.1016/j.rser.2012.10.019

Romruen, O., Karbowiak, T., Tongdeesoontorn, W., Shiekh, K.A., and Rawdkuen, S., 2022. Extraction and characterization of cellulose from agricultural by-products of Chiang Rai Province, Thailand. Polymers. 14(9): 1830. 10.3390/polym14091830.

Rouf, T.B., and Kokini, J.L., 2018. Natural biopolymer-based nanocomposite films for packaging applications. Bionanocomposites for packaging applications. pp. 149–177.

Saba, N., Tahir, P.M., and Jawaid, M., 2014. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers (Basel). 6: 2247–2273. 10.3390/polym6082247

Sakthivel, M., and Ramesh, S., 2013. Mechanical properties of natural fibre (banana, coir, sisal) polymer composites. Science Park. 1(1): 2321–8045.

Sanchez, O.J., and Cardona, C.A., 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology. 99(13): 5270–5295. 10.1016/j.biortech.2007.11.013

Segal, L.G.J.M.A., Creely, J.J., Martin A.E., Jr, and Conrad, C.M., 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research, 29(10): 786–794. 10.1177/004051755902901003

Sheltami, R.M., Abdullah, I., Ahmad, I., Dufresne, A., and Kargarzadeh, H., 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers. 88(2): 772–779. 10.1016/j.carbpol.2012.01.062

Shi, C., Jia, L., Tao, H., Hu, W., Li, C., Aziz, T., et al. 2024. Fortification of cassava starch edible films with Litsea cubeba essential oil for chicken meat preservation. International Journal of Biological Macromolecules. 276(Pt 2): 133920. 10.1016/j.ijbiomac.2024.133920

Shubhaneel, N., Ghosh, S., Haldar, S., Ganguly, A., and Chatterjee, P.K., 2013. Acid catalyzed auto-hydrolysis of Parthenium hysterophorus L. for production of xylose for lignocellulosic ethanol. Int J Emerg Technol Adv Eng. 3(1): 187–192.

Singh, S., Khanna, S., Moholkar, V.S., and Goyal, A., 2014. Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels. Applied Energy. 129: 195–206. 10.1016/j.apenergy.2014.05.008

Stevulova, N., and Schwarzova, I., 2014. Changes in the properties of composites caused by chemical treatment of hemp hurds. International Journal of Environmental and Ecological Engineering. 8(5): 443–447. 10.3390/ma7128131

Sumner, J.B., 1923. The detection of pentose, formaldehyde and methyl alcohol. Journal of the American Chemical Society. 45(10): 2378–2380. 10.1021/ja01663a021

Terinte, N., Ibbett, R., and Schuster, K.C., 2011. Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): comparison between measurement techniques. Lenzinger Berichte. 89(1): 118–131.

Tutt, M., Kikas, T., and Olt, J., 2013. Influence of harvesting time on biochemical composition and glucose yield from hemp. Agronomy Research. 11(1): 215–220,

Varshney, V.K., and Naithani, S., 2011. Chemical functionalization of cellulose derived from nonconventional sources. In: Kalia, S., Kaith, B., and Kaur, I., (eds.). Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, Heidelberg. pp. 43–60. 10.1007/978-3-642-17370-7_2

Wang, H., Huang, L., and Lu, Y., 2009. Preparation and characterization of micro-and nano-fibrils from jute. Fibers and Polymers. 10: 442–445. 10.1007/s12221-009-0442-9

Zameer, M., Tahir, U., Khalid, S., Zahra, N., Sarwar, A., Aziz, T., et al. 2023. Isolation and characterization of indigenous bacterial assemblage for biodegradation of persistent herbicides in the soil. Acta Biochimica Polonica. 70(2): 325–334. 10.18388/abp.2020_6563