Citrus reticulata flavonoids as a valuable source for reducing meat-borne Aeromonas hydrophila

Main Article Content

Nady Khairy Elbarbary
Ayman M. Al-Qaaneh
Mounir M. Bekhit
Maha Abdelhaseib
Reda A. Gomaa
Marwa A. Ali
Mohamed M. Salem
Nermeen M.L. Malak

Keywords

Aeromonas hydrophila, antibiotics, Citrus reticulate, flavonoids, meat-borne pathogens

Abstract


Meat products are one of the nutritious diet options available to consumers. However, meat products have the potential to serve as a reservoir of food-borne infections, such as those caused by Aeromonas species, which pose a significant risk to public health. A total of 270 samples, 30 of each minced beef, meatball, beef burger, chicken nuggets, chicken pane, chicken burger, canned anchovy, canned mackerel, and canned sardine, were obtained from supermarkets in Aswan Province, Egypt, to analyze the occurrence and virulence features of Aeromonas hydrophila. Influence of Citrus reticulata peel extract on the A. hydrophila count and its virulence capacity after different marinating periods was also analyzed. The obtained results revealed that the Aeromonas counts ranged from 2.02±0.30 to 4.21±0.27 log10 CFU/g and 37% of the analyzed samples were contaminated with Aeromonas spp. The main strains discovered were A. hydrophila (13.3%), A. sobria (9.6%), A. caviae (7.4%), A. veronii (4%), and A. fluvialis (2.6%). It was found by polymerase chain reaction that all tested strains (n = 36) belonged to Aeromonas spp., and 89% were identified as A. hydrophila. In contrast, virulence genes aerolysin (aerA) and cytotoxic enterotoxin (act) were found in 61.1% and 50% of the tested isolates, respectively, with a wide range of antibacterial resistance. Additionally, the influence of Citrus reticulata peel extract on A. hydrophila counts at different marinating periods declined significantly with increased concentration without major changes in the sensory criteria.


Abstract 224 | PDF Downloads 140 HTML Downloads 0 XML Downloads 19

References

Abd El-ghfar A.M., Ibrahim H.M., Hassan I.M., Abdel Fattah A.A., and Mahmoud M.H. 2016. Peels of lemon and orange as value-added ingredients: chemical and antioxidant properties. Int J Curr Microbiol Appl Sci. 5(12): 777–794. 10.20546/ijcmas.2016.512.089

Ahangarzadeh M., Masoud G.H., Rahim P., Hossein H., Mostafa Sh., and Mehdi S. 2022. Detection and distribution of virulence genes in Aeromonas hydrophila isolates causing infection in cultured carps. Vet Res Forum. 13(1): 55–60. 10.30466/vrf.2020.115998.2761

Ahmed H.A., Mohamed M.E., Rezk M.M., Gharieb R.M., and Abdel-Maksoud S.A. 2018. Aeromonas hydrophila in fish and humans; prevalence, virulotyping, and antimicrobial resistance. Slov Vet Res. 55: 113–124. 10.26873/SVR-636-2018

Albishi T., John J.A., Al-Khalifa A.S., and Shahidi F. 2013. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J Funct Foods. 5: 590–600. 10.1016/j.jff.2012.11.019

Austin B., and Austin D.A. 2016. Aeromonadaceae representatives (Motile Aeromonads). In: Bacterial fish pathogens. Disease of farmed and wild fish, 6th edn. Springer Nature, Dordrecht, the Netherlands, pp. 161–214. Retrieved from: https://link.springer.com/book/10.1007/978-3-319-32674-0

Bayoumi Z.H.E., Edris A.M., Hossam L.M., and Shawish R.R. 2023. Fitness of some meat products for human consumption in relation to their physico-chemical and bacteriological quality in the Egyptian market. Alex J Vet Sci. 77(1): 30–39. 10.5455/ajvs.144651

Bravo F.A., and Figueras J.M. 2020. An update on the genus Aeromonas: taxonomy, epidemiology, and pathogenicity. Microorganisms. 8(1): 129. 10.3390/microorganisms8010129

Carnahan M.A., and Joseph S.W. 2015. Aeromonas. In: Whitman, W.B. (Ed.) Bergeys manual of systemics of archea and bacteria. Part B. The gamma proteobacteria, Chap. : Aeromonadaceae, 1st edn.. John Wiley, Hoboken, NJ; pp. 556–560. 10.1002/9781118960608.gbm00186

Cicco N., Lanorte M.T., Paraggio M., Viggiano M., and Lattanzio V.A. 2009. Reproducible, rapid and inexpensive Folin-Ciocalteu micro method in determining phenolics of plant methanol extracts. Microch J. 91: 107–110. 10.1016/j.microc.2008.08.011

Clinical and Laboratory Standards Institute (CLSI). 2020. Performance standards for antimicrobial susceptibility testing. CLSI supplement M100, 30th edn. CLSI, Wayne, PA. Retrieved from: www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf

Dhanapala P.M., Kalupahana R.S., Kalupahana A.W., Wijesekera D.P.H., Kottawatta S.A., Jayasekera N.K. 2021. Characterization and antimicrobial resistance of environmental and clinical Aeromonas species isolated from fresh water ornamental fish and associated farming environment in Sri Lanka. Microorganisms. 9(10): 2106. 10.3390/microorganisms9102106

Ebrahimzadeh M.A., Pourmorad F., and Bekhradnia A.R. 2008. Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. Afr J Biot. 7(18): 3188–3192. Retrieved from: https://www.researchgate.net/publication/228349084

Elbarbary N., Abd El-aziz D.S., Maky M.A.M., Khalifa M.I., and Karmi, M. 2024. Assessment of the bacteriological quality of some fish products. Egy J Vet Sci. 55(1): 183–196. 10.21608/ejvs.2023.225910.1551

Elbarbary N.K., and Abdelmotilib N.M. 2023. Effect of natural antimicrobials on the reduction of pseudomonas aeruginosa in frozen chicken products. J Adv Vet Res. 13(3): 501–507. Retrieved from https://advetresearch.com/index.php/AVR/article/view/1263

Elbayoumi Z.H., Zahran R.N., and Shawish R.R. 2021. Prevalence and characterization of Aeromonas spp. isolated from some meat products in Egypt. J Nut Food Tech. 7(1): (Open access). 10.16966/2470-6086.170

Elbehiry A., Marzouk E., Abdeen E., Al-Dubaib M., Alsayeqh A., Ibrahem M., et al. 2019. Proteomic characterization and discrimination of Aeromonas species recovered from meat and water samples with a spotlight on the antimicrobial resistance of Aeromonas hydrophila. Microbiologyopen. 8(11): e782. 10.1002/mbo3.782

El-ghareeb H., Zahran E., and Elghany S. 2019. Occurrence, molecular characterization and antimicrobial resistance of pathogenic Aeromonas hydrophila from retail fish. Alex J Vet Sci. 62(1): 172–181. 10.5455/ajvs.49297

El-Hossary D., Mahdy A., Elariny E.Y.T., Askora A., Merwad A.M.A., Saber T., et al. 2023. Antibiotic resistance, virulence gene detection, and biofilm formation in Aeromonas spp. isolated from fish and humans in Egypt. Biology. 12: 421. 10.3390/biology12030421

Ercolini D., Russo F., Nasi A., Ferranti P., and Villani F. 2009. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl Environ Microbiol J. 75(7): 1990–2001. 10.1128/AEM.02762-08

Fathy H.M., Abd El-Maksoud A.A., Cheng W., and Elshaghabee F.M.F. 2022. Value-added utilization of citrus peels in improving functional properties and probiotic viability of Acidophilus-bifidus-thermophilus (ABT)-type synbiotic yoghurt during cold storage. Foods. 11: 2677. 10.3390/foods11172677

Fauzi N., Hamdan R., Mohamed M., Ismail A., Zin A., and Mohamad N. 2021. Prevalence, antibiotic susceptibility, and presence of drug resistance genes in Aeromonas spp. isolated from freshwater fish in Kelantan and Terengganu states, Malaysia. Vet World. 14(8): 2064–2072. 10.14202/vetworld.2021.2064-2072

Gahruie H.H., Eskandari M.H., Mesbahi G., and Hanifpour M.A. 2015. Scientific and technical aspects of yogurt fortification: a review. Food Sci Hum Well. 4: 1–8. 10.1016/j.fshw.2015.03.002

Goupy P., Hugues M., Boivin P., and Amiot M. 1999. Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J Sci Food Agr. 79: 1625–1634. 10.1002/(SICI)1097-0010(199909)79:12

Hafez A.E.E., Darwish W.S., Elbayomi R.M., and Hussein S.M. 2018. Prevalence, antibiogram and molecular characterization of Aeromonas hydrophila isolated from frozen fish marketed in Egypt. Slov Vet Res. 55: 445–454. 10.26873/SVR-671-2018

Hidalgo R.B., and Figueras M.J. 2013. Aeromonas spp. whole genomes and virulence factors implicated in fish disease. J Fish Dis. 36(4): 371–388. 10.1111/jfd.12025

Hu M., Wang N., Pan Z.H, Lu C.P., and Liu Y.J. 2012. Identity and virulence properties of Aeromonas isolates from diseased fish, healthy controls and water environment in China. Lett Appl Microbiol. 55(3): 224–233. 10.1111/j.1472-765x.2012.03281.x

Kilinc B., and Cakli S. 2004. Chemical, microbiological and sensory changes in thawed frozen fillets of Sardine (Sardina pilchardus) during marination. Food Chem. 88(2): 275–280. 10.1016/j.foodchem.2004.01.044

Kishk D., Moustafa N.Y., and Kirrella G.A. 2020. Prevalence and virulence characteristics of Aeromonas species isolated from fish farms in Egypt. Kafrelsheikh Vet Med J (KVMJ). 18: 5–8. 10.21608/kvmj.2020.115274

Lin X., Cao S., Sun J., Lu D., Zhong B., and Chun J. 2021. The chemical compositions, and antibacterial and antioxidant activities of four types of citrus essential oils. Molecules. 26(11): 3412. 10.3390/molecules26113412

Magalhães D., Vilas-Boas A.A., Teixeira P., and Pintado M. 2023. Functional ingredients and additives from lemon by-products and their applications in food preservation: a review. Foods. 12(5): 1095. 10.3390/foods12051095

Manna S.K., Maurye P., Dutta C., and Samanta G. 2013. Occurrence and virulence characteristics of Aeromonas species in meat, milk and fish in India. J Food Safety. 33(4): 461–469. 10.1111/jfs.12077

Manzur M., Luciardi M.C., Blázquez M.A., Alberto M.R., Cartagena E., and Arena M.E. 2023. Citrus sinensis essential oils an innovative antioxidant and antipathogenic dual strategy in food preservation against spoliage bacteria. Antioxidants. 12(2): 246. 10.3390/antiox12020246

Morshdy A.R.E., Mohamed A.H., and Rasha M.B. 2022. Prevalence of antibiotic resistant Aeromonas and molecular identification of Aeromonas hydrophila isolated from some marketed fish in Egypt. J Adv Vet Res. 12(6): 717–721. Retrieved from: https://www.advetresearch.com/index.php/AVR/article/view/1096

Nishad J., Koley T.K., Varghese E., and Kaur C. 2018. Synergistic effects of nutmeg and citrus peel extracts in imparting oxidative stability in meat balls. Food Res Int. 106: 1026–1036. 10.1016/j.foodres.2018.01.075

Nhinh D.T., Le D.V., Van K.V., Huong Giang N.T., Dang L.T., and Hoai T.D. 2021. Prevalence, virulence gene distribution and alarming the multidrug resistance of Aeromonas hydrophila associated with disease outbreaks in freshwater aquaculture. Antibiotics. 10(5): 532. 10.3390/antibiotics10050532

Oikeh E.I., Oviasogie F.E., and Omoregie E.S. 2020. Quantitative phytochemical analysis and antimicrobial activities of fresh and dry ethanol extracts of Citrus sinensis (L.) Osbeck (sweet Orange) peels. Clin Phytosci. 6: 46. 10.1186/s40816-020-00193-w

Osman K., Aly M., Kheader A., and Mabrok K. 2012. Molecular detection of the Aeromonas virulence aerolysin gene in retail meats from different animal sources in Egypt. World J Microbiol Biotechnol. 28(5): 1863–1870. 10.1007/s11274-011-0915-z

Pereira F., Carneiro J., Matthiesen R., van Asch B., Pinto N., Gusmão L., et al. 2010. Identification of species by multiplex analysis of variable length sequences. Nucl Acids Res. 38(22): e203. 10.1093/nar/gkq865

Praveen P.K., Debnath C., Shekhar S., Dalai N., and Ganguly S. 2016. Incidence of Aeromonas spp. infection in fish and chicken meat and its related public health hazards: a review. Vet World J. 9(1): 6–11. 10.14202/vetworld.2016.6-11

Radha K.K., Babuskin S., Azhagu S.B.P., Sasikala M., Sivarajan M., and Sukumar M. 2014. Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. Int J Food Microbiol. 171: 32–40. 10.1016/j.ijfoodmicro.2013.11.011

Ramadan H., Ibrahim N., Samir M., Abd ElMoaty A., and Gad T. 2018. Aeromonas hydrophila from marketed mullet (Mugil cephalus) in Egypt: PCR characterization of β-lactam resistance and virulence genes. J Appl Microbiol. 124(6): 1629–1637. 10.1111/jam.13734

Rekha S.S., and Bhaskar M. 2013. In vitro screening and identification of anti-oxidant activities of orange (Citrus sinensis) peels extract in different solvents. Int J Pharma Bio Sci. 4(4): 405–412. Retrieved from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84889025257&partnerID=40&md5=5eaed1bed842da5ec9ed22628e5233cd

Saleh E., Alaa Eldin M.A.M., Mohamed A.M., and Basma F. 2017. Prevalence of Aeromonas species and their herbal control in fish. Global Vet. 18(4): 286–293. 10.5829/idosi.gv.2017.286.293

Schoch C.L., Ciufo S., Domrachev M., Hotton C.L., Kannan S., Khovanskaya R., et al. 2020. NCBI taxonomy: a comprehensive update on curation, resources and tools. Database J Biol Databases Curat (Oxford). 2020: baaa062. 10.1093/database/baaa062

Sheir, S., Ibrahim, H., Hassan, M., and Shawky, N. (2020). Prevalence of Aeromonas spp and their virulence factors isolated from frozen chicken meat products. Benha Vet Med J. 39: 47–51. 10.21608/bvmj.2020.37742.1237

Singh B., Singh J.P., Kaur A., and Singh N. 2020. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res Int. 132: 109–114. 10.1016/j.foodres.2020.109114

Stratev D., and Odeyemi O.A. 2015. Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources: a mini review. J Inf Public Health. 9(5): 535–544. 10.1016/j.jiph.2015.10.006

Tawfik T., Gad-Elrab H., and Abdel-Aziz N. 2022. Incidence of Aeromonas species isolated from fresh fish, canned fish and shrimp in Sohag Governorate, Egypt. SVU Int J Vet Sci. 5(2): 106–116. 10.21608/svu.2022.137345.1199

Thaotumpitak V., Sripradite J., Atwill E.R., and Jeamsripong S. 2023. Emergence of colistin resistance and characterization of antimicrobial resistance and virulence factors of Aeromonas hydrophila, Salmonella spp., and Vibrio cholerae isolated from hybrid red tilapia cage culture. Peer J. 11: e14896. 10.7717/peerj.14896

Yadav D., Kaumar A., Kumar P., and Mishra D. 2015. Antimicrobial properties of black grape peel extracts against antibiotic-resistant pathogenic bacteria and toxin production molds. Indian J Pharmacol. 47(6): 663. 10.4103/0253-7613.169591

Zaki N., and Naeem M. 2021. Antioxidant, antimicrobial and anticancer activities of citrus peels to improve the shelf life of yoghurt drink. Egypt J Food Sci. 49(2): 249–265. 10.21608/ejfs.2021.58310.1092