Unveiling the carbon footprint of True Neapolitan Pizza: paving the way for eco-friendly practices in pizzerias

Main Article Content

Mauro Moresi https://orcid.org/0000-0002-4706-0129
Aniello Falciano
Alessio Cimini
Paolo Masi

Keywords

carbon footprint, life cycle analysis, PAS 2050 standard method, True Neapolitan Pizza, typical pizza restaurant

Abstract

This study investigated the environmental ramifications in the production and consumption of pizza. The PAS 2050 standard methodology was used to quantify the cradle-to-grave carbon footprint of a typical medium-sized Neapolitan pizzeria offering both table service and takeaway in cardboard boxes. A spectrum of sustainable practices capable of mitigating the greenhouse gas (GHG) emissions of pizzerias was analyzed. By accounting for consistent GHG emissions across specific life cycle phases—such as energy consumption, refrigerant gas leakage, detergent production, and wastewater treatment—it was possible to estimate the cradle-to-grave carbon footprint of different iterations of the True Neapolitan Pizza. For instance, the Marinara pizza had a carbon footprint of approximately 1.7 kg CO2e/kg while the Margherita pizza topped with mozzarella cheese registered roughly twice that figure. Moreover, garnishing the Margherita with buffalo mozzarella increased its carbon footprint to 4.2 kg CO2e/kg. This difference in environmental impact can be chiefly attributed to the condiments of vegetable or animal origin, with variations in protein and fat content significantly influencing the energy value of each pizza variant. These findings emphasized the importance of informed decisions for a greener culinary future, highlighting the critical role of ingredient choices in shaping the sustainability profile of pizza offerings.

Abstract 376 | PDF Downloads 271 HTML Downloads 0 XML Downloads 164

References

Alves E.C., Soares B.B., de Almeida Neto J.A., and Rodrigues L.B. 2019. Strategies for reducing the environmental impacts of organic mozzarella cheese production. J Clean Prod. 223: 226–237. 10.1016/j.jclepro.2019.03.006

Bava L., Bacenetti J., Gislon G., Pellegrino L., D’Incecco P., Sandrucci A., et al. 2018. Impact assessment of traditional food manufacturing: the case of Grana Padano cheese. Sci Total Environ. 626: 1200–1209. 10.1016/j.scitotenv.2018.01.143

Berlese M., Corazzin M., and Bovolenta S. 2019. Environmental sustainability assessment of buffalo mozzarella cheese production chain: a scenario analysis. J Clean Prod. 238: 117922. 10.1016/j.jclepro.2019.117922

BSI (2011) PAS 2050: 2011. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution, London, UK.

Bulle C., Margni M., Patouillard L., Boulay A.-M., Bourgault G., De Bruille V., et al. 2019. IMPACT World+: a globally regionalized life cycle impact assessment method. Int J Life Cycle Assess. 24: 1653–1674. 10.1007/s11367-019-01583-0

Buonanno G., Morawska L., Stabile L., and Viola A. 2010. Exposure to particle number, surface area and PM concentrations in pizzerias. Atmos Environ. 44: 3963–3969. 10.1016/j.atmosenv.2010.07.002

Cesari L. 2023. Storia della pizza. Da Napoli a Hollywood. Il Saggiatore, Milano.

Cimini A., Cibelli M., and Moresi M. 2020. Environmental impact of pasta. In Galanakis C. (Ed.) Environmental Impact of Agro-Food Industry and Food Consumption. Chp. 5. Academic Press, San Diego, CA, USA, pp. 101–127. 10.1016/B978-0-12-821363-6.00005-9

Cimini A., and Moresi M. 2016. Carbon footprint of a pale lager packed in different formats: assessment and sensitivity analysis based on transparent data. J Clean Prod. 112: 4196–4213. 10.1016/j.jclepro.2015.06.063

Cimini A., and Moresi M. 2021. Circular economy in the brewing chain. Ital J Food Sci. 33: 47–69. 10.15586/ijfs.v33i3.2123

Cimini A., Sestili F., and Moresi M. 2022. Environmental profile of a novel high-amylose bread wheat fresh pasta with low glycemic index. Foods. 11: 3199. 10.3390/foods11203199

Cortesi A., Pénicaud C., Saint-Eve A., Soler L.-G., and Souchon I. 2022. Does environmental impact vary widely within the same food category? A case study on industrial pizzas from the French retail market. J Clean Prod. 336: 130128. 10.1016/j.jclepro.2021.130128

Crawford R. 2021. Home-delivered food has a huge climate cost. So which cuisine is the worst culprit? 2021. Available online: https://theconversation.com/home-delivered-food-has-a-huge-climate-cost-so-which-cuisine-is-the-worst-culprit-151564 (accessed on 25 March 2024).

Crippa M., Solazzo E., Guizzardi D., Monforti-Ferrario F., Tubiello F.N., and Leip A. 2021. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat Food. 2: 198–209. 10.1038/s43016-021-00225-9

Davies T., and Konisky D.M. 2000. Environmental implications of the foodservice and food retail industries. Discussion Paper -11. Resources for the future, Washington, DC, USA. https://media.rff.org/documents/RFF-DP-00-11.pdf (accessed on 25 March 2024).

Dijkman T.J., Basset-Mens C., Antón A., and Núñez M. 2018. LCA of food and agriculture. In: Hauschild M.Z., Rosenbaum R.K., and Olsen S.I. (Eds.), Life Cycle Assessment: Theory and Practice. Springer International Publishing, Cham, pp. 723–754. 10.1007/978-3-319-56475-3_29

EC 1996. Commission Regulation (EC), No 1107/96 of 12 June 1996 on the registration of geographical indications and designations of origin under the procedure laid down in Article 17 of Council Regulation (EEC) No 2081/92. Official Journal L 148, 0001-0010. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31996R1107 (accessed on 28 March 2024).

EC 2010. Commission Regulation (EU) No. 97/2010, “entering a name in the register of traditional specialities guaranteed [Pizza Napoletana (TSG)]”. OJEU L 34, 5.02.2010.

EC 2019. European Union (EU). Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019 setting CO2 emission performance standards for new passenger cars and for new LCV and repealing Regulations (EC) No 443/2009 and (EU) No 510/2011. Off J Eur Union, 25, 111–113. http://data.europa.eu/eli/reg/2019/631/oj (accessed on 31; March 2024).

EC 2021. Commission Recommendation (EU) 2021/2279 of 15 December 2021 on the use of the environmental footprint methods to measure and communicate the life cycle environmental performance of products and organisations. OJEU. L471/1, 1–396. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021H2279 (accessed on 13 September 2024).

EcoInvent (n.d.) System models. Available online: https://ecoinvent.org/the-ecoinvent-database/system-models/#!/allocation (accessed on 21 July 2024).

EPA (U.S. Environmental Protection Agency). 2022. Energy Star® guide for cafés, restaurants, and commercial kitchens. EPA 430-R-9-030. Available online at: https://betterbuildingssolutioncenter.energy.gov/resources/energy-star%C2%AE-guide-caf%C3%A9s-restaurants-and-commercial-kitchens (accessed 20 July 2024).

Espadas-Aldana G., Vialle C., Belaud J.-P., Vaca-Garcia C., and Sablayrolles C. 2019. Analysis and trends for life cycle assessment of olive oil production. Sustain Prod Consum. 19: 216–230. 10.1016/j.spc.2019.04.003

Falciano A., Cimini A., Masi P., and Moresi M. 2022. Carbon footprint of a typical Neapolitan pizzeria. Sustainability. 14(5): 3125. 10.3390/su14053125

FAO (Food and Agriculture Organization) 2019. The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. FAO, Rome. Available online at: https://openknowledge.fao.org/server/api/core/bitstreams/11f9288f-dc78-4171-8d02-92235b8d7dc7/content (accessed 20 July 2024).

Hofmann S. and Gensch C.-O. 2012. Carbon footprint–Frozen Food. Final Report: Life Cycle Assessment of Various Product Options and Identification of Optimization Potentials for Selected Frozen Food Products. German Institute for Frozen Food-Oeko-Institute, 2012. Available online: https://www.tiefkuehlkost.de/download/finalreport-cf-frozenfood-final.pdf.pdf (accessed on 23 March 2024).

Huijbregts M.A.J., Hellweg S., Frischknecht R., Hendriks H.W.M., Hungerbühler K., and Hendriks A.J. 2010. Cumulative energy demand as predictor for the environmental burden of commodity production. Environ. Sci Technol. 44(6): 2189–2196. 10.1021/es902870s

Huijbregts M.A.J., Rombouts L.J.A., Hellweg S., Frischknecht R., Hendriks A.J., van de Meent D., et al. 2006. Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ Sci Technol. 40(3): 641–648. 10.1021/es051689g

Huijbregts M.A.J., Steinmann Z.J.N., Elshout P.M.F., Stam G., Verones F., Vieira M., et al. 2017. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int J Life Cycle Assess. 22: 138–147. 10.1007/s11367-016-1246-y

IPCC 2019. Special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Summary for policy makers. Intergovernmental Panel on Climate Change, Cambridge, UK. Available online at: https://www.ipcc.ch/srccl/ (accessed on 22 March 2024).

ISO 2006a. 14040-Environmental Management e Life Cycle Assessment e Principles and Framework. International Organization for Standardization, Genève, CH.

ISO 2006b. 14044-Environmental Management–Life Cycle Assessment–Requirements and Guidelines. International Organization for Standardization, Genève, CH.

Jang, Y. J. 2016. Environmental sustainability management in the foodservice industry: understanding the antecedents and consequences. Journal of Foodservice Business Research. 19(5): 441–453. 10.1080/15378020.2016.1185880

Jazbec M., Salim H., Khara T., Cordell D., and White S. 2022. Shifting the Menu: reducing the carbon footprint of fast-food consumption by switching to plant-based options. Report prepared by the Institute for Sustainable Futures, University of Technology Sydney, for World Animal Protection.

Kim D., Thoma G., Nutter D., Milani F., Ulrich R., and Norris G. 2013. Life cycle assessment of cheese and whey production in the USA. Int J Life Cycle Assess. 18: 1019–1035. 10.1007/s11367-013-0553-9

Kuscer L. 2024. Slice of the Pie: Pizza Consumption Trends & Industry Statistics. https://muchneeded.com/pizza-consumption-statistics/ (accessed on 23 March 2024).

Lins M., Zandonadi R.P., Strasburg V.J., Nakano E.Y., Botelho R.B.A., Raposo A., et al. 2021. Eco-inefficiency formula: a method to verify the cost of the economic, environmental, and social impact of waste in food services. Foods. 10: 1369. 10.3390/foods10061369

Messier J.M. 2016. The restaurant GHG guidelines: an operational greenhouse gas emissions accounting protocol for restaurants. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA. https://conservancy.umn.edu/bitstream/handle/11299/191254/Messier_umn_0130M_16992.pdf?sequence=1 (accessed on 30 March 2024).

Moresi M., and Cimini A. 2024. A comprehensive study from cradle-to-grave on the environmental profile of malted legumes. Foods. 13(5): 655. 10.3390/foods13050655

OECD 2023. Meat Consumption. Organisation for Economic Co-Operation and Development, https://data.oecd.org/agroutput/meat-consumption.htm (accessed on 24.03.2024).

Petersson T., Secondi L., Magnani A., Antonelli M., Dembska K., Valentini R., et al. 2021. A multilevel carbon and water footprint dataset of food commodities. Scientific Data. 8: 127. 10.1038/s41597-021-00909-8

Quantis 2016. A comparative life cycle assessment of plant-based foods and meat foods. Report prepared for Morning Star Farms, Quantis USA, Boston, MA. https://www.morningstarfarms.com/content/dam/NorthAmerica/morningstarfarms/pdf/MSFPlantBasedLCAReport_2016-04-10_Final.pdf (accessed on 24 March 2024).

Ronchi E., and Nepi M.L. 2020. L’Italia del riciclo 2020. Fondazione per lo sviluppo sostenibile, FISE UNICIRCULAR, Roma.

Rosenzweig C., Mbow C., Barioni L.G., Benton T.G., Herrero M., Krishnapillai M., et al. 2020. Climate change responses benefit from a global food system approach. Nat Food. 1: 94–97. 10.1038/s43016-020-0031-z

Rossi C., Bernabucci U., Grossi G., Cesarini F., Lacetera N., Evangelista C., et al. 2023. Cradle-to-grave life cycle assessment of buffalo mozzarella cheese supply chain in central Italy. J Agric Food Res. 14: 100871 10.1016/j.jafr.2023.100871

Roy P., Nei D., Orikasa T., Xu Q., Okadome H., Nakamura N., et al. 2009. A review of life cycle assessment (LCA) on some food products. J Food Eng. 90: 1–10. 10.1016/j.jfoodeng.2008.06.016

Singh B., and Highway D. 2016. What is your restaurant’s carbon footprint? https://www.pizzamarketplace.com/articles/what-is-your-restaurants-carbon-footprint/ (accessed on 26 March 2024).

Stylianou K., Nguyen V.K., Fulgoni V.L., and Jolliet O. 2018. Environmental impacts of mixed dishes: a case study on pizza. FASEB J. 10.1096/fasebj.31.1_supplement.lb386

Terna 2022. Dati statistici sull’energia elettrica in Italia. https://www.terna.it/it/sistema-elettrico/statistiche/pubblicazioni-statistiche (accessed on 31 March 2024).

Tubiello F.N., Karl K., Flammini A., Gütschow J., Obli-Laryea G., Conchedda G., et al. 2022. Pre-and post-production processes incresingly dominate greenhouse gas emissions from agri-food systems. ESSD. 14: 1795–1809. 10.5194/essd-14-1795-2022

Tubiello F.N., Rosenzweig C., Conchedda G., Karl K., Gütschow J., Xueyao P., et al. 2021. Environ Res Lett. 16(6): 65007. 10.1088/1748-9326/ac018e

UDiCon (Unione per la Difesa dei Consumatori) 2020. Giornata mondiale della pizza: festa per i consumatori. https://www.udicon.org/2020/01/17/giornata-mondiale-della-pizza-festa-per-i-consumatori/ (accessed on 23 March 2024).

Weidema B.P., Wesnæs M., Hermansen J., Kristensen T., and Halberg N. 2008. Environmental improvement potentials of meat and dairy products. In: Eder P., Delgado L. (Eds.) Report EUR 23491 EN. European Commission, Joint Research Centre (DG JRC). Institute for Prospective Technological Studies, Sevilla, Spain.

WHO (2021) World Health Organization Global Air Quality Guidelines. https://www.who.int/news-room/questions-and-answers/item/who-global-air-quality-guidelines (accessed on 1 April 2024).

Xu X., Sharma P., Shu S., Lin T.-S., Ciais P., Tubiello F.N., et al. 2021. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat Food. 2(1): 724–732. 10.1038/s43016-021-00358-x

Ying C., and Freed P. 2016. Knowing is half the battle. https://www.youtube.com/watch?v=l2IP1Y_Nd4I (accessed on 30 March 2024).