Nutritional potential, phytochemical analysis, and biological activities of quinoa (Chenopodium quinoa Willd.) seeds from arid zone culture
Main Article Content
Keywords
Quinoa seeds, nutritional value, phytochemicals, biological activities, multivariate analysis
Abstract
Quinoa, scientifically known as Chenopodium quinoa Willd., is well recognized for its exceptional nutritional composition and potential benefits for human health. This research aims to conduct a phytochemical analysis of nutraceutical properties and biologcal activities of seven different quinoa cultivars, namely, red, white, Amarilla marangani, kancolla, Giza 02, Amarilla sacaca, and black. The analysis of ground seeds revealed that Giza 02, white, and A. marangani had the most significant protein, fat, ash, and carbohydrates, respectively. Furthermore, the MeOH extracts of the various quinoa genotypes exhibited high levels of total phenolic, flavonoid, condensed tannin and reducing sugar contents in the seed extracts obtained using consecutive solvents. In addition, HPLC-DAD analysis revealed the presence of seven phenolic compounds, which may be classified into four families: phenolic acid, flavonoids, coumarins, and stilbenes. The IC50 values for the antioxidant activity ranged from 6.4 to 7.7 µg/mL. Furthermore, the variability in the antibacterial activity across different genotypes and gram-positive and gram-negative bacterial species was observed, and the efficacy of the CYHA-red extract against Micrococcus luteus was the highest. The findings of this study indicate that the incorporation of quinoa into the arid and Saharan cultivation system has the potential to enhance the nutritional and nutraceutical characteristics of the seeds.
References
Ayadi J., Debouba M., Rahmani R., and Bouajila J. 2023. The phytochemical screening and biological properties of Brassica napus L. var. napobrassica (Rutabaga) seeds. Molecules. 28: 6250. 10.3390/molecules28176250
Balakrishnan G., and Schneider R. G. 2022. The role of amaranth, quinoa, and millets for the development of healthy, sustainable food products: A concise review. Foods. 11: 2442. 10.3390/foods11162442
Ben Khadher T., Aydi S., Mars M., and Bouajila J. 2022. Study on the chemical composition and the biological activities of vitis vinifera stem extracts. Molecules. 27: 3109. 10.3390/molecules27103109
Brito I. d. L., Chantelle L., Magnani M., and Cordeiro A. M. T. d. M. 2022. Nutritional, therapeutic, and technological perspectives of quinoa (Chenopodium quinoa Willd.): A review. J Food Process Preserv. 46: e16601. 10.1111/jfpp.16601
Chaudhary N., Walia S., and Kumar R. 2023. Functional composition, physiological effect and agronomy of future food quinoa (Chenopodium quinoa Willd.): A review. J Food Compos Anal. 118: 105192. 10.1016/j.jfca.2023.105192
Gómez M. J. R., Prieto J. M., Sobrado V. C., and Magro P. C. 2021. Nutritional characterization of six quinoa (Chenopodium quinoa Willd) varieties cultivated in Southern Europe. J Food Compos Anal. 99: 103876. 10.1016/j.jfca.2021.103876
Horwitz W., and Latimer G. (1975). Official methods of analysis, Association of Official Analytical Chemists Washington, DC.
Hussain M. I., Farooq M., Syed Q. A., Ishaq A., Al-Ghamdi A. A., and Hatamleh A. A. 2021. Botany, nutritional value, phytochemical composition and biological activities of quinoa. Plants. 10: 2258. 10.3390/plants10112258
Hussin S. A., Ali S. H., Lotfy M. E., El-Samad E. H. A., Eid M. A., Abd-Elkader A. M., et al. 2023. Morpho-physiological mechanisms of two different quinoa ecotypes to resist salt stress. BMC Plant Biol. 23: 374. 10.21203/rs.3.rs-2535498/v1
Karna N., Berger M. A., Asgari-Targhi M., Paulson K., and Fujiki K. I. 2022. A study of an equatorial coronal hole observed at the first parker solar probe perihelion. The Astrophys J. 925: 62. 10.3847/1538-4357/ac3c46
Karthika G., and Govintharaj P. 2022. Breeding climate-resilience crops for future agriculture. Clim change crop stress, Elsevier: 1–32. 10.1016/B978-0-12-816091-6.00009-2
Li L., Lietz G., and Seal C. J. 2021. Phenolic, apparent antioxidant and nutritional composition of quinoa (Chenopodium quinoa Willd.) seeds. Int J Food Sci Tech. 56: 3245–3254. 10.1111/ijfs.14962
Liu J., Wang Z., Wang Z., Hao Y., Wang Y., Yang Z., et al. 2020. Physicochemical and functional properties of soluble dietary fiber from different colored quinoa varieties (Chenopodium quinoa Willd). J Cereal Sci. 95:103045.10.1016/j.jcs.2020.103045
Liu M., Zhu K., Yao Y., Chen Y., Guo H., Ren G., et al. 2020. Antioxidant, anti-inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chem. 97: 703–713. 10.1002/cche.10286
Melini F., and Melini V. 2022. Phenolic compounds in novel foods: Insights into white and pigmented quinoa. Eur Food Res Technol. 248: 2955–2968. 10.1007/s00217-022-04103-x
Melini V., and Melini F. 2021. Functional components and anti-nutritional factors in gluten-free grains: A focus on quinoa seeds. Foods. 10: 351. 10.3390/foods10020351
Nisar M., More D., Zubair S., and Hashmi S. I. 2017. Physico-chemical and nutritional properties of quinoa seed: A review. J Pharmaco Phytochem. 6: 2067–2069.
Ocampo M., Fischer S., Folch-Cano C., Pinto A., and Figueroa I. 2023. Content and antioxidant capacity of phenolic compounds in quinoa seed: A review. Chilean J Agri Res. 83: 754–767. 10.4067/S0718-58392023000600754
Park J. H., Lee Y. J., Kim Y. H., and Yoon K. S. 2017. Antioxidant and antimicrobial activities of quinoa (Chenopodium quinoa Willd.) seeds cultivated in Korea. Prev Nutr Food Sci. 22: 195. 10.3746/pnf.2017.22.3.195
Pathan S., and Siddiqui R. A. 2022. Nutritional composition and bioactive components in quinoa (Chenopodium quinoa Willd.) greens: A review. Nutrients. 14: 558. 10.3390/nu14030558
Pirzadah T. B., Malik B., Aadil F., Tripathi A., Joshi M. 2023. Quinoa: Golden grain of the 21st Century. Ethnic Knowledge and Perspectives of Medicinal Plants, Apple Academic Press, pp. 535–549.
Rahimi E., and Bagheri M. 2020. Chemical, antioxidant, total phenolic and flavonoid components and antimicrobial effects of different species of quinoa seeds. Egypt J Vet Sci. 51: 43–54. 10.21608/ejvs.2019.17122.1098
Sánchez-García J., Asensio-Grau A., García-Hernández J., Heredia A., and Andrés A. 2022. Nutritional and antioxidant changes in lentils and quinoa through fungal solid-state fermentation with Pleurotus ostreatus. Bioresour Bioprocess. 9: 51. 10.1186/s40643-022-00542-2
Saoudi M. M., Bouajila J., Rahmani R., and Alouani K. 2021. Phytochemical composition, antioxidant, antiacetylcholinesterase, and cytotoxic activities of Rumex crispus L. Int J Anal Chem. 2021. 10.1155/2021/6675436
Sassi Aydi S., Aydi S., Kolsi R. B. A., Haddeji N., Rahmani R., Ktari N., and Bouajila J. 2020. CO2 enrichment: Enhancing antioxidant, antibacterial and anticancer activities in Arthrospira platensis. Food biosc. 35:100575. 10.1016/j.fbio.2020.100575.
Schmidt D., Verruma-Bernardi M. R., Forti V. A., and Borges M. T. M. R. 2023. Quinoa and amaranth as functional foods: A review. Food Rev Int. 39: 2277–2296. 10.1080/87559129.2021.1950175
Shah S., Khan Y., and Yan H. 2022. The phytochemical, pharmacological and medicina l evaluation of quinoa (Chenopodium quinoa Willd.). Pakistan J Weed Sci Res. 28:138. 10.28941/pjwsr.v28i2.1049
Villacrés E., Quelal M., Galarza S., Iza D., and Silva E. 2022. Nutritional value and bioactive compounds of leaves and grains from quinoa (Chenopodium quinoa Willd.). Plants. 11:213. 10.3390/plants11020213
Vitǎneaşcu M., Teliban G., Cojocaru A., and Stoleru V. 2019. Physico-Chemical Characteristics Of Quinoa Seeds. Scientific Papers. Series B, Horticulture. 63(1):385–390. https://horticulture-journal.usamv.ro/pdf/2019/issue_1/Art56.pdf
Yang F., Guo T., Zhou Y., Han S., Sun S., and Luo F. 2022. Biological functions of active ingredients in quinoa bran: Advance and prospective. Crit Rev Food Sci Nutr.1–15. 10.1080/10408398.2022.2139219